Relational Graph Models, Taylor Expansion and Extensionality

We define the class of relational graph models and study the induced order- and equational- theories. Using the Taylor expansion, we show that all λ-terms with the same Bohm tree are equated in any relational graph model. If the model is moreover extensional and satisfies a technical condition, then its order-theory coincides with Morris's observational pre-order. Finally, we introduce an extensional version of the Taylor expansion, then prove that two λ-terms have the same extensional Taylor expansion exactly when they are equivalent in Morris's sense.

[1]  Martin Hyland A survey of some useful partial order relations on terms of the lambda calculus , 1975, Lambda-Calculus and Computer Science Theory.

[2]  Giuseppe Rosolini,et al.  A Category Theoretic Formulation for Engeler-style Models of the Untyped λ-Calculus , 2006 .

[3]  Giulio Manzonetto,et al.  A General Class of Models of H* , 2009, MFCS.

[4]  Giulio Manzonetto,et al.  What is a categorical model of the differential and the resource λ-calculi? , 2010, Mathematical Structures in Computer Science.

[5]  Chantal Berline,et al.  From computation to foundations via functions and application: The -calculus and its webbed models , 2000, Theor. Comput. Sci..

[6]  Reiji Nakajima Infinite normal forms for the lambda - calculus , 1975, Lambda-Calculus and Computer Science Theory.

[7]  M. Coppo Type theories, normal forms, and D?-lambda-models*1 , 1987 .

[8]  Luca Paolini,et al.  The Parametric Lambda-Calculus: a Metamodel for Computation , 2004 .

[9]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[10]  Erwin Emgeler Algebras and combinators , 1979 .

[11]  Antonio Bucciarelli,et al.  Not Enough Points Is Enough , 2007, CSL.

[12]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[13]  Flavien Breuvart On the characterization of models of H , 2014, CSL-LICS.

[14]  Thomas Ehrhard,et al.  Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..

[15]  Luca Paolini,et al.  The Parametric Lambda Calculus: A Meta-Model for Computation (Texts in Theoretical Computer Science) , 2004 .

[16]  E. Engeler Algebras and combinators , 1981 .

[17]  Thomas Ehrhard,et al.  Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms , 2006, CiE.

[18]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[19]  Roberto M. Amadio,et al.  Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .

[20]  Michele Pagani,et al.  A characterization of the Taylor expansion of lambda-terms , 2013, CSL.

[21]  Mariangiola Dezani-Ciancaglini,et al.  Intersection types for lambda-trees , 2002, Theor. Comput. Sci..

[22]  Paolo Tranquilli,et al.  Intuitionistic differential nets and lambda-calculus , 2011, Theor. Comput. Sci..

[23]  Mariangiola Dezani-Ciancaglini,et al.  Type Theories, Normal Forms and D_\infty-Lambda-Models , 1987, Inf. Comput..

[24]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[25]  Giulio Manzonetto,et al.  Böhm's Theorem for Resource Lambda Calculus through Taylor Expansion , 2011, TLCA.

[26]  M. Hyland A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus , 1976 .