Modelling Multivariate Time Series

Multivariate time series (MTS) data are widely available in di erent elds including medicine, nance, science and engineering. Modelling MTS data e ectively is important for many decision-making activities. In this paper, we will describe some of our e orts in modelling these data for numerous tasks such as outlier analysis, forecasting and explanation. Through the analysis of various kinds of MTS data to achieve those tasks, we hope to trigger discussions in the workshop about what \I" could mean in \IDA" for this type of application.

[1]  Alberto Riva,et al.  Interpreting Longitudinal Data through Temporal Abstractions: An Application to Diabetic Patients Monitoring , 1997, IDA.

[2]  Cristiana Larizza,et al.  M-HTP: A system for monitoring heart transplant patients , 1992, Artif. Intell. Medicine.

[3]  Elpida T. Keravnou,et al.  Modelling Medical Concepts as Time-Objects , 1995, AIME.

[4]  Xiaohui Liu,et al.  AI for Public Health: Self-Screening for Eye Diseases , 1998, IEEE Intell. Syst..

[5]  Kevin P. Murphy,et al.  Learning the Structure of Dynamic Probabilistic Networks , 1998, UAI.

[6]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[7]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[8]  Mohammed Waleed Kadous,et al.  Learning Comprehensible Descriptions of Multivariate Time Series , 1999, ICML.

[9]  Paul R. Cohen,et al.  Discovering Dynamics Using Bayesian Clustering , 1999, IDA.

[10]  Paul R. Cohen,et al.  Advances in Intelligent Data Analysis Reasoning about Data , 1997, Lecture Notes in Computer Science.

[11]  N. Lavrac,et al.  Intelligent Data Analysis in Medicine and Pharmacology , 1997 .

[12]  S Miksch,et al.  Effective data validation of high-frequency data: Time-point-, time-interval-, and trend-based methods , 1997, Comput. Biol. Medicine.

[13]  Stephen Swift,et al.  Modelling and forecasting of glaucomatous visual fields using genetic algorithms , 1999 .

[14]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[15]  Jeff Harrison,et al.  Applied Bayesian Forecasting and Time Series Analysis , 1994 .

[16]  Giovanni Soda,et al.  Bidirectional Dynamics for Protein Secondary Structure Prediction , 2001, Sequence Learning.

[17]  Xiaohui Liu,et al.  Intelligent data analysis: issues and challenges , 1996, The Knowledge Engineering Review.

[18]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[19]  D. Collett,et al.  The Subjective Nature of Outlier Rejection Procedures , 1976 .

[20]  E. J. Hannan,et al.  Multiple time series , 1970 .

[21]  Xiaohui Liu,et al.  Evolutionary learning of dynamic probabilistic models with large time lags , 2001, Int. J. Intell. Syst..

[22]  Xiaohui Liu,et al.  Reasoning about Outliers by Modelling Noisy Data , 1997, IDA.

[23]  Ira J. Haimowitz,et al.  Automated Trend Detection with Alternate Temporal Hypotheses , 1993, IJCAI.

[24]  G. C. Tiao,et al.  An introduction to multiple time series analysis. , 1993, Medical care.

[25]  Raymond T. Ng,et al.  A Unified Notion of Outliers: Properties and Computation , 1997, KDD.

[26]  P. Cohen,et al.  Eecient Mining of Statistical Dependencies , 1999 .

[27]  Yuval Shahar,et al.  A Framework for Knowledge-Based Temporal Abstraction , 1997, Artif. Intell..

[28]  David J. Hand,et al.  Intelligent Data Analysis: Issues and Opportunities , 1998, Intell. Data Anal..

[29]  Xiaohui Liu,et al.  Noise and Uncertainty Management in Intelligent Data Modeling , 1994, AAAI.

[30]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .