A mathematical model of stress generation and fracture in lithium manganese oxide

Fracture of Li y Mn 2 O 4 is predicted with a numerical model that calculates the stress generated in spherical particles due to lithium intercalation along the 4-V plateau and phase change along the 3-V plateau. In the former case, fracture is probable at the rates typical of high-power applications, while in the latter case, the probability of fracture is linked not to the discharge rate or particle size, but to the LiMn 2 O 4 /Li 2 Mn 2 O 4 phase ratio. The two-phase material should fracture immediately upon lithium extraction. The effects of variation in thermodynamic factor, diffusion coefficient, and lattice parameter are examined in detail.

[1]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[2]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[3]  M. Tournoux,et al.  Phases LixMnO2λ rattachees au type spinelle , 1983 .

[4]  J. Goodenough,et al.  Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4 , 1987 .

[5]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[6]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[7]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[8]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[9]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[10]  J. Sugiyamat,et al.  Elastic/anelastic behaviour during the phase transition in spinel LiMn2O4 , 1995 .

[11]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[12]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[13]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[14]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[15]  T. Ohzuku,et al.  Monitoring of Particle Fracture by Acoustic Emission during Charge and Discharge of Li / MnO2 Cells , 1997 .

[16]  K. Brandt,et al.  Extraction of lithium from spinel phases of the system Li1+xMn2−xO4−δ , 1997 .

[17]  Robert M. Darling,et al.  Modeling side reactions in composite LiYMn2O4 electrodes , 1998 .

[18]  Robert M. Darling,et al.  Dynamic Monte Carlo Simulations of Diffusion in Li[sub y]Mn[sub 2]O[sub 4] , 1999 .

[19]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[20]  Jeffrey A. Reimer,et al.  A {sup 7}Li NMR study of lithium insertion into lithium manganese oxide spinel , 1999 .

[21]  J. Goodenough,et al.  Li[Mn2]O4 spinel cathode material showing no capacity fading in the 3 V range , 2000 .

[22]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[23]  Seung M. Oh,et al.  Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries , 2000 .

[24]  J. Goodenough,et al.  Nanocrystalline Lithium Manganese Oxide Spinel Cathode for Rechargeable Lithium Batteries , 2001 .

[25]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[26]  Olle Eriksson,et al.  Electronic structure, magnetic, and cohesive properties of LixMn2O4: Theory , 2002 .

[27]  E. Cairns,et al.  A 7Li NMR Study of Capacity Fade in Metal-Substituted Lithium Manganese Oxide Spinels , 2002 .

[28]  A. Manthiram,et al.  Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides , 2003 .

[29]  C. Masquelier,et al.  The charge order transition and elastic/anelastic properties of LiMn2O4 , 2003 .

[30]  Venkat Srinivasan,et al.  Design and Optimization of a Natural Graphite/Iron Phosphate Lithium-Ion Cell , 2004 .

[31]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[32]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[33]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .