An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation

The industrial sector often employs piezoelectric materials as actuators for a variety of uses, some of which require a precise positioning while being limited by space and cost factors that impede the insertion of external position and force sensors. Piezoelectric actuators (PEAs) are characterized by strong nonlinearities (hysteresis and creep), badly damped oscillations, and sensitivity to the environment, especially temperature variation, which makes the measurement of the position mandatory to guarantee the required precision and repeatability of piezoelectric-based positioning systems operating at the microscale and nanoscale. Self-sensing actuation (SSA) techniques allow the implementation of precise positioning control of PEAs without the hindrance of external position sensors. This article reviews the different SSA techniques used for precise positioning control of PEAs. The principle of SSA is defined by the capability of deriving the physical state of a PEA (displacement, perceived force, and so on) without the use of external sensors to directly measure thereof, but rather by estimating it from the measurement of less intrusive and cheaper physical signals produced by the PEA itself (throughout current, voltage drop, and so on). The applicability and constraints of each SSA approach are examined in order to help in the determination of the most adequate approach for precise control of PEAs positioning and handling force control.

[1]  Mingjie Guan,et al.  Studies on the circuit models of piezoelectric ceramics , 2004, International Conference on Information Acquisition, 2004. Proceedings..

[2]  Zhi Liu,et al.  Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation , 2018 .

[3]  Aristides A. G. Requicha,et al.  Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation , 2008, IEEE Transactions on Automation Science and Engineering.

[4]  Kurt Schlacher,et al.  Observer-based self sensing actuation of piezoelastic structures for robust vibration control , 2012, Autom..

[5]  Yasuo Cho,et al.  Dynamic measuring method of capacitance variation of piezoelectric ceramics with alternating electric field , 1992 .

[6]  Micky Rakotondrabe,et al.  Observer and Robust $H_{\infty }$ Control of a 2-DOF Piezoelectric Actuator Equipped With Self-Measurement , 2018, IEEE Robotics and Automation Letters.

[7]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[8]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.

[9]  Chul H. Park On the Circuit Model of Piezoceramics , 2001 .

[10]  Juliana Johari,et al.  Optimization of piezoelectric transducer placement in shoe insole for energy harvesting , 2017, 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE).

[11]  Jun Ueda,et al.  A Force and Displacement Self-Sensing Piezoelectric MRI-Compatible Tweezer End Effector With an On-Site Calibration Procedure , 2014, IEEE/ASME Transactions on Mechatronics.

[12]  Rudolf Seethaler,et al.  Identification of Constitutive Parameters for Piezo Stack Actuators Based on Online Capacitance Measurements , 2011 .

[13]  Micky Rakotondrabe Combining self-sensing with an unkown-input-observer to estimate the displacement, the force and the state in piezoelectric cantilevered actuators , 2013, 2013 American Control Conference.

[14]  Takeshi Morita,et al.  High-precision positioning using a self-sensing piezoelectric actuator control with a differential detection method , 2011 .

[15]  Hiroshi Hosaka,et al.  Self-Sensing Piezoelectric Actuator using Permittivity Detection , 2008 .

[16]  Philippe Lutz,et al.  Optimal Design of Piezoelectric Cantilevered Actuators With Guaranteed Performances by Using Interval Techniques , 2014, IEEE/ASME Transactions on Mechatronics.

[17]  Andrew J. Fleming,et al.  A review of nanometer resolution position sensors: Operation and performance , 2013 .

[18]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[19]  Yves Perriard,et al.  Design of an Optimized Self-Sensing Piezoelectric Cantilever for Micro-Robotic Applications , 2018, 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).

[20]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[21]  Taesam Kang,et al.  Modeling and Design of H-Infinity Controller for Piezoelectric Actuator LIPCA , 2010 .

[22]  José Carlos Bellido,et al.  Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile , 2016 .

[23]  Rudolf J. Seethaler,et al.  Sensorless Position Control For Piezoelectric Actuators Using A Hybrid Position Observer , 2014, IEEE/ASME Transactions on Mechatronics.

[24]  Qingsong Xu,et al.  A review on actuation and sensing techniques for MEMS-based microgrippers , 2017 .

[25]  D. Inman Control/structure interaction - Effects of actuator dynamics , 1990 .

[26]  Qingze Zou,et al.  A review of feedforward control approaches in nanopositioning for high-speed spm , 2009 .

[27]  Rudolf J. Seethaler,et al.  Simultaneous Displacement and Force Estimation of Piezoelectric Stack Actuators Using Charge and Voltage Measurements , 2017, IEEE/ASME Transactions on Mechatronics.

[28]  Hong Tan,et al.  DESIGN NOTE: The design and characterization of a piezo-driven ultra-precision stepping positioner , 2000 .

[29]  Michael G. Ruppert,et al.  High-bandwidth multimode self-sensing in bimodal atomic force microscopy , 2016, Beilstein journal of nanotechnology.

[30]  Rajesh Rajamani,et al.  A high-aspect-ratio two-axis electrostatic microactuator with extended travel range , 2002 .

[31]  Sepehr Zarif Mansour,et al.  Displacement and Force Self-Sensing Technique for Piezoelectric Actuators Using a Nonlinear Constitutive Model , 2019, IEEE Transactions on Industrial Electronics.

[32]  Yoon Su Baek,et al.  Contact-free moving-magnet type of micropositioner with optimized specification , 2002 .

[33]  David Mumford,et al.  Hysteresis independent on-line capacitance measurement for piezoelectric stack actuators , 2011, 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE).

[34]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[35]  Kazuhiko Oshima,et al.  Application of self-sensing actuator to control of a cantilever beam , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[36]  Yongsheng Gao,et al.  Dynamic Modeling of a Novel Workpiece Table for Active Surface Grinding Control , 2001 .

[37]  Ole Sigmund,et al.  Topology optimization of piezo modal transducers with null-polarity phases , 2016 .

[38]  P. Gao,et al.  A six-degree-of-freedom micro-manipulator based on piezoelectric translators , 1999 .

[39]  Clarence W. de Silva,et al.  Sensors and Actuators: Engineering System Instrumentation, Second Edition , 2015 .

[40]  Giacomo Bianchi,et al.  Active spindle system for a rotary planing machine , 2012 .

[41]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[42]  Thomas Schlinquer,et al.  Optimal design of a unimorph piezoelectric cantilever devoted to energy harvesting to supply animal tracking devices , 2017 .

[43]  Jinhao Qiu,et al.  Self-sensing force control of a piezoelectric actuator , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Micky Rakotondrabe,et al.  Further Results on Hysteresis Compensation of Smart Micropositioning Systems With the Inverse Prandtl–Ishlinskii Compensator , 2016, IEEE Transactions on Control Systems Technology.

[45]  J. Onoda,et al.  A self-sensing method for switching vibration suppression with a piezoelectric actuator , 2007 .

[46]  Philippe Lutz,et al.  Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[47]  H. Li,et al.  Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells , 2018, Journal of Sound and Vibration.

[48]  Abdenbi Mohand-Ousaid,et al.  Design, modeling and simulation of a three-layer piezoelectric cantilevered actuator with collocated sensor , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[49]  Wei Ph. D. Gao Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing , 2010 .

[50]  D D Ebenezer,et al.  Design and optimization of piezoelectric unimorph beams with distributed excitation. , 2018, The Journal of the Acoustical Society of America.

[51]  Rudolf J. Seethaler,et al.  Simultaneous quasi-static displacement and force self-sensing of piezoelectric actuators by detecting impedance , 2018 .

[52]  Philippe Lutz,et al.  Optimal Design of Piezoelectric Cantilevered Actuators for Charge-Based Self-Sensing Applications , 2019, Sensors.

[53]  Philippe Lutz,et al.  Self-Sensing Method Considering the Dynamic Impedance of Piezoelectric Based Actuators for Ultralow Frequency , 2018, IEEE Robotics and Automation Letters.

[54]  Emílio Carlos Nelli Silva,et al.  Topology optimization of smart structures: design of piezoelectric plate and shell actuators , 2005 .

[55]  S. O. Reza Moheimani,et al.  A new piezoelectric tube scanner for simultaneous sensing and actuation , 2009, 2009 American Control Conference.

[56]  Jun Akedo,et al.  What Thickness of the Piezoelectric Layer with High Breakdown Voltage is Required for the Microactuator? , 2002 .

[57]  Nesbitt W. Hagood,et al.  Simultaneous sensing and actuation using piezoelectric materials , 1992, Other Conferences.

[58]  Eberhard Bänsch,et al.  Topology optimization of a piezoelectric-mechanical actuator with single- and multiple-frequency excitation , 2009 .

[59]  M. Sasaki,et al.  Vibration control of a micro-actuator for the hard disk drive using self-sensing actuation , 2008, 2008 International Conference on Control, Automation and Systems.

[60]  Philippe Lutz,et al.  Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators. , 2009, The Review of scientific instruments.

[61]  Daniel J. Inman,et al.  Thermal protection for a self-sensing piezoelectric control system , 2007 .

[62]  Daniel M. De Leon,et al.  Simultaneous optimization of piezoelectric actuator topology and polarization , 2018 .

[63]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[64]  Qingsong Xu,et al.  An overview of micro-force sensing techniques , 2015 .

[65]  Mehdi Boukallel,et al.  Modeling and control of a piezoelectric microactuator with proprioceptive sensing capabilities , 2014 .

[66]  Manu Sharma,et al.  Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review , 2010 .

[67]  Sabri Cetinkunt,et al.  Design, fabrication and real-time neural network control of a three degrees of freedom nano-positioner , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[68]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[69]  Kenta Seki,et al.  Application of self-sensing technique for position control considering vibration suppression in piezo-driven stage , 2015, 2015 IEEE International Conference on Mechatronics (ICM).

[70]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[71]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[72]  Naotake Mohri,et al.  Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[73]  Mary Frecker,et al.  Topology optimization of compliant mechanical amplifiers for piezoelectric actuators , 2000 .

[74]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[75]  Gangbing Song,et al.  A comprehensive model for piezoceramic actuators: modelling, validation and application , 2009 .

[76]  Guoxiao Guo,et al.  Self-sensing actuation for nanopositioning and active-mode damping in dual-stage HDDs , 2006, IEEE/ASME Transactions on Mechatronics.

[77]  Takeshi Morita,et al.  Self-sensing control of piezoelectric positioning stage by detecting permittivity , 2015 .

[78]  Philippe Lutz,et al.  Quasi-Static Displacement Self-Sensing Measurement for a 2-DOF Piezoelectric Cantilevered Actuator , 2017, IEEE Transactions on Industrial Electronics.

[79]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[80]  Takeshi Morita,et al.  Improvement of Self-sensing Piezoelectric Actuator Control Using Permittivity Change Detection , 2010 .

[81]  Philippe Lutz,et al.  Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. , 2009, The Review of scientific instruments.

[82]  Philippe Lutz,et al.  Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control , 2015, IEEE/ASME Transactions on Mechatronics.

[83]  Andrew J. Fleming,et al.  Improved Current and Charge Amplifiers for Driving Piezoelectric Loads, and Issues in Signal Processing Design for Synthesis of Shunt Damping Circuits , 2004 .

[84]  H.M.S. Georgiou,et al.  Dynamic electromechanical drift model for PZT , 2008 .

[85]  Vishwas Bedekar,et al.  Modeling, Simulation and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting in Multi-Beam and Trapezoidal Approach , 2018 .

[86]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.