The Application of Advanced Design ofExperiments for the Efficient Development ofChemical Processes

The combination of Principal Component Analysis (PCA) with Design of Experiments (DoE) is a powerful and very efficient tool for optimising chemical processes. This article explains how to apply PCA and DoE, and demonstrates the benefits with three case studies.

[1]  Jeremy N. Harvey,et al.  Expansion of the Ligand Knowledge Base for Chelating P,P-Donor Ligands (LKB-PP) , 2012, Organometallics.

[2]  Neal G. Anderson,et al.  Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications , 2015 .

[3]  Torbjörn Lundstedt,et al.  Principal properties for synthetic screening: ketones and aldehydes , 1988 .

[4]  Johan E. Carlson,et al.  Principal properties and designs for discrete variations , 2005 .

[5]  T. Lundstedt,et al.  Screening of suitable solvents in organic synthesis. Strategies for solvent selection , 1985 .

[6]  R. Carlson,et al.  Design and optimization in organic synthesis , 1991 .

[7]  Claus Cornett,et al.  Solvent diversity in polymorph screening. , 2008, Journal of pharmaceutical sciences.

[8]  Torbjörn Lundstedt,et al.  Principal properties for synthetic screening: amines , 1988 .

[9]  Riccardo Leardi,et al.  Experimental design in chemistry: A tutorial. , 2009, Analytica chimica acta.

[10]  Lawrence X. Yu Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control , 2008, Pharmaceutical Research.

[11]  Paul M. Murray,et al.  Beyond the Numbers: Charting Chemical Reaction Space , 2013 .

[12]  Michel Chanon,et al.  Approach to a general classification of solvents using a multivariate statistical treatment of quantitative solvent parameters , 1985 .

[13]  Paul M. Murray,et al.  Ligand and solvent selection in challenging catalytic reactions , 2014 .

[14]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[15]  Paul M. Murray,et al.  A robust first-pass protocol for the heck-mizoroki reaction , 2013 .

[16]  Ryohei Yamaguchi,et al.  Multialkylation of aqueous ammonia with alcohols catalyzed by water-soluble Cp*Ir-ammine complexes. , 2010, Journal of the American Chemical Society.

[17]  Torbjörn Lundstedt,et al.  Lewis acids in organic synthesis. Approach to a selection strategy for screening experiments , 1986 .

[18]  M Haniti S A Hamid,et al.  Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. , 2009, Journal of the American Chemical Society.

[19]  Paul M. Murray,et al.  The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. , 2016, Organic & biomolecular chemistry.

[20]  Matthias Beller,et al.  An improved ruthenium catalyst for the environmentally benign amination of primary and secondary alcohols. , 2007, Chemistry, an Asian journal.

[21]  Jeremy N. Harvey,et al.  Expansion of the Ligand Knowledge Base for Monodentate P-Donor Ligands (LKB-P)† , 2010 .

[22]  Claus Cornett,et al.  Solvent subset selection for polymorph screening , 2008 .

[23]  Jonathan M J Williams,et al.  Ruthenium catalysed N-alkylation of amines with alcohols. , 2007, Chemical communications.