A serine sensor for multicellularity in a bacterium

We report the discovery of a simple environmental sensing mechanism for biofilm formation in the bacterium Bacillus subtilis that operates without the involvement of a dedicated RNA or protein. Certain serine codons, the four TCN codons, in the gene for the biofilm repressor SinR caused a lowering of SinR levels under biofilm-inducing conditions. Synonymous substitutions of these TCN codons with AGC or AGT impaired biofilm formation and gene expression. Conversely, switching AGC or AGT to TCN codons upregulated biofilm formation. Genome-wide ribosome profiling showed that ribosome density was higher at UCN codons than at AGC or AGU during biofilm formation. Serine starvation recapitulated the effect of biofilm-inducing conditions on ribosome occupancy and SinR production. As serine is one of the first amino acids to be exhausted at the end of exponential phase growth, reduced translation speed at serine codons may be exploited by other microbes in adapting to stationary phase. DOI: http://dx.doi.org/10.7554/eLife.01501.001

[1]  Thomas M. Norman,et al.  Memory and Modularity in Cell-Fate Decision Making , 2013, Nature.

[2]  P. Girguis,et al.  Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. , 2013, Genes & development.

[3]  H. Vlamakis,et al.  Bacillus subtilis biofilm induction by plant polysaccharides , 2013, Proceedings of the National Academy of Sciences.

[4]  L. Hurst,et al.  Positively Charged Residues Are the Major Determinants of Ribosomal Velocity , 2013, PLoS biology.

[5]  H. Vlamakis,et al.  Sticking together: building a biofilm the Bacillus subtilis way , 2013, Nature Reviews Microbiology.

[6]  Tao Pan,et al.  Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria , 2012, Proceedings of the National Academy of Sciences.

[7]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[8]  R. Losick,et al.  A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants , 2012, Molecular microbiology.

[9]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[10]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[11]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[12]  Thomas M. Norman,et al.  Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis , 2011, The EMBO journal.

[13]  J. Plotkin,et al.  Synonymous but not the same: the causes and consequences of codon bias , 2011, Nature Reviews Genetics.

[14]  R. Losick,et al.  The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC , 2010, Journal of bacteriology.

[15]  Thomas M. Norman,et al.  An epigenetic switch governing daughter cell separation in Bacillus subtilis. , 2010, Genes & development.

[16]  R. Hammer,et al.  Dependence of Mouse Embryonic Stem Cells on Threonine Catabolism , 2009, Science.

[17]  Mark S. Sundrud,et al.  Halofuginone Inhibits TH17 Cell Differentiation by Activating the Amino Acid Starvation Response , 2009, Science.

[18]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[19]  Roberto Kolter,et al.  A Widely Conserved Gene Cluster Required for Lactate Utilization in Bacillus subtilis and Its Involvement in Biofilm Formation , 2009, Journal of bacteriology.

[20]  M. Fischbach,et al.  Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis , 2009, Proceedings of the National Academy of Sciences.

[21]  Reinhard Wolf,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009 .

[22]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[23]  R. Losick,et al.  A novel regulatory protein governing biofilm formation in Bacillus subtilis , 2008, Molecular microbiology.

[24]  Roberto Kolter,et al.  Bistability and biofilm formation in Bacillus subtilis , 2007, Molecular microbiology.

[25]  K. Riedel,et al.  Formation of some extracellular enzymes during the exponential growth ofBacillus subtilis , 2008, Folia Microbiologica.

[26]  G. Sezonov,et al.  Escherichia coli Physiology in Luria-Bertani Broth , 2007, Journal of bacteriology.

[27]  R. Kolter,et al.  Microbial sciences: The superficial life of microbes , 2006, Nature.

[28]  R. Losick,et al.  Targets of the master regulator of biofilm formation in Bacillus subtilis , 2006, Molecular microbiology.

[29]  J. Elf,et al.  Selective charging of tRNA isoacceptors induced by amino‐acid starvation , 2005, EMBO reports.

[30]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[31]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[32]  R. Sauer,et al.  Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. , 2003, Molecular cell.

[33]  J. Elf,et al.  Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage , 2003, Science.

[34]  F. Rothman,et al.  Regulation of Development in Dictyostelium discoideum , 2003 .

[35]  C. Yanofsky,et al.  Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Ann M Stock,et al.  Histidine kinases and response regulator proteins in two-component signaling systems. , 2001, Trends in biochemical sciences.

[39]  J. Hoch,et al.  Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis , 2000, Molecular microbiology.

[40]  Dieter Jahn,et al.  Fermentative Metabolism of Bacillus subtilis: Physiology and Regulation of Gene Expression , 2000, Journal of bacteriology.

[41]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[42]  A. Wach PCR‐synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae , 1996, Yeast.

[43]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[44]  A. Wolfe,et al.  Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids , 1994, Journal of bacteriology.

[45]  M. Grunberg‐Manago,et al.  Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. , 1994, The Journal of biological chemistry.

[46]  C. Kurland,et al.  Codon preferences in free-living microorganisms. , 1990, Microbiological reviews.

[47]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[48]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[49]  F. Marin Regulation of development in Dictyostelium discoideum: I. Initiation of the growth to development transition by amino acid starvation. , 1976, Developmental biology.

[50]  R. Doi,et al.  Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions. , 1966, Proceedings of the National Academy of Sciences of the United States of America.