The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

[1]  Christian Kandt,et al.  Structural dynamics of the cell wall precursor lipid II in the presence and absence of the lantibiotic nisin. , 2014, Biochimica et biophysica acta.

[2]  C. Aisenbrey,et al.  Molecular packing of amphipathic peptides on the surface of lipid membranes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[3]  H. Sahl,et al.  Aggregates of nisin with various bactoprenol-containing cell wall precursors differ in size and membrane permeation capacity. , 2013, Biochimica et biophysica acta.

[4]  Reinhard Lipowsky,et al.  Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. , 2013, Faraday discussions.

[5]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[6]  Daniel L. Parton,et al.  Multiscale simulations of the antimicrobial peptide maculatin 1.1: water permeation through disordered aggregates. , 2012, The journal of physical chemistry. B.

[7]  Mu-Ping Nieh,et al.  Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. , 2011, Biochimica et biophysica acta.

[8]  M. Selsted,et al.  Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. , 2011, Journal of the American Chemical Society.

[9]  Ulrich Kubitscheck,et al.  Light Sheet Microscopy for Single Molecule Tracking in Living Tissue , 2010, PloS one.

[10]  U. Kubitscheck,et al.  Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. , 2010, Biochimica et biophysica acta.

[11]  M. C. Cardoso,et al.  Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. , 2009, Biochemistry.

[12]  Feng-Ching Tsai,et al.  Adsorption-induced vesicle fission. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Petra Schwille,et al.  Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. , 2008, Biophysical journal.

[14]  C. Tribet,et al.  Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. , 2007, Soft matter.

[15]  J. van Heijenoort Lipid Intermediates in the Biosynthesis of Bacterial Peptidoglycan , 2007, Microbiology and Molecular Biology Reviews.

[16]  K. Kremer,et al.  Aggregation and vesiculation of membrane proteins by curvature-mediated interactions , 2007, Nature.

[17]  A. Hermetter,et al.  Import and fate of fluorescent analogs of oxidized phospholipids in vascular smooth muscle cells Published, JLR Papers in Press, November 29, 2006. , 2007, Journal of Lipid Research.

[18]  O. Kuipers,et al.  An Alternative Bactericidal Mechanism of Action for Lantibiotic Peptides That Target Lipid II , 2006, Science.

[19]  H. Sahl,et al.  Insights into In Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies , 2006, Antimicrobial Agents and Chemotherapy.

[20]  J. Tagg,et al.  Molecular and Genetic Characterization of a Novel Nisin Variant Produced by Streptococcus uberis , 2006, Applied and Environmental Microbiology.

[21]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[22]  R. Kaptein,et al.  The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics , 2004, Nature Structural &Molecular Biology.

[23]  O. Kuipers,et al.  Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. , 2004, FEMS microbiology letters.

[24]  W. Im,et al.  Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. , 2004, Biophysical journal.

[25]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.

[26]  Alessandro Tossi,et al.  In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II‐Gly5) of Staphylococcus aureus , 2004, Molecular microbiology.

[27]  S. May,et al.  Membrane perturbation induced by interfacially adsorbed peptides. , 2004, Biophysical journal.

[28]  R. Benz,et al.  Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: a Black Lipid Membrane Study , 2004, Journal of bacteriology.

[29]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[30]  A. Heck,et al.  Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes* , 2003, Journal of Biological Chemistry.

[31]  J. Nakayama,et al.  Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced by Lactococcus lactis 61-14 Isolated from a River in Japan , 2003, Bioscience, biotechnology, and biochemistry.

[32]  B. de Kruijff,et al.  Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. , 2002, Biochemistry.

[33]  Oscar P. Kuipers,et al.  Specific Binding of Nisin to the Peptidoglycan Precursor Lipid II Combines Pore Formation and Inhibition of Cell Wall Biosynthesis for Potent Antibiotic Activity* , 2001, The Journal of Biological Chemistry.

[34]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[35]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[36]  M. Poot,et al.  Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain , 1997, Applied and environmental microbiology.

[37]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[38]  U. Kubitscheck,et al.  Optical single-channel analysis of the aerolysin pore in erythrocyte membranes. , 1996, Biophysical journal.

[39]  W. D. de Vos,et al.  Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis , 1993, Applied and Environmental Microbiology.

[40]  W. D. de Vos,et al.  Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. , 1992, The Journal of biological chemistry.

[41]  G. Schwarz,et al.  Kinetics of pore-mediated release of marker molecules from liposomes or cells. , 1992, Biophysical chemistry.

[42]  R. Cherry,et al.  Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. , 1992, Journal of cell science.

[43]  W. D. de Vos,et al.  Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. , 1991, European journal of biochemistry.

[44]  M. Angelova,et al.  Lipid swelling and liposome formation mediated by electric fields , 1988 .

[45]  B. Hughes,et al.  The translational and rotational drag on a cylinder moving in a membrane , 1981, Journal of Fluid Mechanics.

[46]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Gross,et al.  The structure of nisin. , 1971, Journal of the American Chemical Society.

[48]  U. Kubitscheck,et al.  DYNAMIC 3 D PARTICLE TRACKING DEEP INSIDE LIVING TISSUE , 2012 .

[49]  G. Boheim Statistical analysis of alamethicin channels in black lipid membranes , 2005, The Journal of Membrane Biology.

[50]  F. Menger,et al.  Chemistry and physics of giant vesicles as biomembrane models. , 1998, Current opinion in chemical biology.

[51]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[52]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .