Spartan Gibbs Random Field Models for Geostatistical Applications

GEOSTATISTICAL APPLICATIONS Abstract: The inverse problem of determining the spatial dependence of random fields from an experimental sample is a central issue in Geostatistics. We propose a computationally efficient approach based on Spartan Gibbs random fields. Their probability density function is determined by a small set of parameters, which can be estimated by enforcing sample-based constraints on the stochastic moments. The computational complexity of calculating the constraints increases linearly with the sample size. We investigate a specific Gibbs probability density with spatial dependence derived from generalized gradient and Laplacian operators, and we derive permissibility conditions for the model parameters. The optimal values for the parameters are determined by minimizing a normalized metric measuring the ÒdistanceÓ between stochastic moments and the sample constraints. The computational complexity of the minimization depends on the number of the model parameters, but not on the sample size. We illustrate the method using simulated control samples with different types of spatial dependence. Spartan Gibbs random fields are useful for modeling large samples, and when reliable estimation of the variogram is not possible. Estimation of the field values at non-sampled positions, conditional simulations, as well as extensions to anisotropic spatial dependence, non-Gaussian probability densities, and off-lattice distributions are briefly discussed.

[1]  Ulrich H E Hansmann,et al.  Global optimization by energy landscape paving. , 2002, Physical review letters.

[2]  A Ajdari,et al.  Effective-area elasticity and tension of micromanipulated membranes. , 2001, Physical review letters.

[3]  Dionissios T. Hristopulos,et al.  New anisotropic covariance models and estimation of anisotropic parameters based on the covariance tensor identity , 2002 .

[4]  Diego Bricio Hernández,et al.  Lectures on Probability and Second Order Random Fields , 1995 .

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  Eulogio Pardo-Igúzquiza,et al.  VARIOG2D: a computer program for estimating the semi-variogram and its uncertainty , 2001 .

[7]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[8]  David Mumford,et al.  The Statistical Description of Visual Signals , 1996 .

[9]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[10]  John H. Cushman,et al.  On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory , 1984 .

[11]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[12]  R. Mattuck,et al.  A guide to Feynman diagrams in the many-body problem , 1976 .

[13]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[14]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[15]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[16]  Clayton V. Deutsch,et al.  Practical considerations in the application of simulated annealing to stochastic simulation , 1994 .

[17]  Dionissios T. Hristopulos,et al.  Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus , 1998, Springer US.

[18]  U. Hornung Homogenization and porous media , 1996 .

[19]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[20]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[21]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[22]  Yue Rong,et al.  Environmental Statistics , 2011, Handbook of statistics.

[23]  R. V. Churchill,et al.  Lectures on Fourier Integrals , 1959 .

[24]  Schwartz,et al.  Method for generating long-range correlations for large systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Pierre Goovaerts,et al.  Accounting for Estimation Optimality Criteria in Simulated Annealing , 1998 .

[26]  Zérah,et al.  Propagation in random media: Calculation of the effective dispersive permittivity by use of the replica method. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Dionissios T. Hristopulos,et al.  Variational calculation of the effective fluid permeability of heterogeneous media , 1997 .

[28]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[29]  Dionissios T. Hristopulos,et al.  On the physical geometry concept at the basis of space/time geostatistical hydrology , 2000 .

[30]  John H. Cushman,et al.  On Measurement, Scale, and Scaling , 1986 .

[31]  N. Cressie,et al.  Robust estimation of the variogram: I , 1980 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[34]  Dionissios T. Hristopulos,et al.  Practical Calculation of Non-Gaussian Multivariate Moments in Spatiotemporal Bayesian Maximum Entropy Analysis , 2001 .

[35]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[36]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[37]  J. S. Dowker,et al.  Green's Functions and Condensed Matter , 1982 .