Influence of controlled tool orientation on pattern formation and waviness in surface grinding

The surface of ground components can exhibit quality impairments which are attributed to grinding wheel irregularities. A remaining grinding wheel imbalance or a non-uniform grinding wheel topography results in a radial run-out which strongly affects the generated surface. By measuring and adjusting the phase-shift of the grinding wheel orientation during consecutive grinding passes, the resulting workpiece surfaces can significantly be improved. Experimental investigations show a strong effect of the phase-shift on the waviness profile and the pattern formation, as the pattern wave length coincides with the tangential feed. Setting the phase-shift directly affects the engagement conditions like the contact stiffness, remarkably influencing the dynamic process behaviour. The amplitudes of the normal force at rotational frequency have a strong effect on the workpiece surface, which can be influenced by a variation of the phase-shift. Constancy of table oscillating period will further increase due to faster machine control hardware, making longer periods of constant phase-shifts more likely to occur. As this parameter is mostly uncontrolled, it can cause intermittent grinding errors.