Microlithography with Soft X Rays

The use of soft x rays as a practical means of replicating patterns in the fabrication of electronic and optical microdevices was suggested by Spears and Smith(1, 2) in 1972. The approach is similar to contact x-ray microscopy, which has been used for several decades (see Chapter 8). Typically, x-ray wavelengths from 0.4 to 8.0 nm are used to proximity print Au mask patterns supported by thin transparent substrates with 0.1-µm resolution. X-ray lithography is an important alternative to optical lithography because it overcomes the fundamental limitations of diffraction and of shallow depth of field. Although x-ray replication is itself dependent on electron beam lithography for generating masks, it has inherently higher resolution for making device features. More importantly, it is a parallel rather than a serial exposure process, which tends to make it much more cost effective effective than direct electron beam wafer writing. In fact from an economic point of view, x-ray lithography is potentially competitive with optical lithography for fabricating electronic devices with 1.0-µm features. At 0.5-µm feature sizes x-ray lithography may be the only viable approach that has a throughput on the order of one wafer per minute. X-ray lithography systems intended to meet these micron and submicron volume production goals are being developed commercially.

[1]  E. Spiller,et al.  High transmission x-ray masks for lithographic applications , 1975 .

[2]  Burn Jeng Lin Deep-UV conformable-contact photolithography for bubble circuits , 1976 .

[3]  R. Seymour,et al.  Structure-solubility relationships in polymers , 1977 .

[4]  K. Galloway,et al.  On the compatibility of X-ray lithography and SOS device fabrication , 1978, IEEE Transactions on Electron Devices.

[5]  A. Ouano,et al.  Parameters affecting the electron beam sensitivity of poly(methyl methacrylate) , 1977 .

[6]  A. N. Broers,et al.  Electron‐beam fabrication of 80‐Å metal structures , 1976 .

[7]  Henry I. Smith,et al.  A new interferometric alignment technique , 1977 .

[8]  A. Neureuther,et al.  Electron-beam resist edge profile simulation , 1979, IEEE Transactions on Electron Devices.

[9]  K. Yanagida,et al.  Fabrication of micro‐ and submicron‐bubble memory devices by a mask transfer technique with subsequent getter‐ion etching , 1978 .

[10]  A. Ouano A study on the dissolution rate of irradiated poly(methyl methacrylate) , 1978 .

[11]  N. Dyson,et al.  X-rays in atomic and nuclear physics , 1990 .

[12]  M. Hatzakis,et al.  Electron Resists for Microcircuit and Mask Production , 1969 .

[13]  R. K. Watts,et al.  Submicron X-Ray Lithography , 1976, Other Conferences.

[14]  Henry I. Smith,et al.  X-ray Lithography: A New High Resolution Replication Process. , 1972 .

[15]  M. Hatzakis,et al.  Recent developments in electron‐resist evaluation techniques , 1975 .

[16]  Per G. Glöersen Ion Beam Etching , 1975, Atomic Layer Processing.

[17]  E. G. Spencer,et al.  Polymeric Resists for X‐Ray Lithography , 1974 .

[18]  The effect of electron‐beam aluminization on the Si‐sapphire interface , 1977 .

[19]  H.I. Smith,et al.  Fabrication of silicon MOS devices using X-ray lithography , 1975, IEEE Transactions on Electron Devices.

[20]  Paul A. Sullivan,et al.  Optimized source for x‐ray lithography of small area devices , 1975 .

[21]  Henry I. Smith,et al.  High-resolution pattern replication using soft X rays , 1972 .

[22]  J. Maldonado,et al.  High speed replication of submicron features on large areas by X-ray lithography , 1975, IEEE Transactions on Electron Devices.

[23]  G. Iafrate,et al.  Beam-Density Effect on the Stopping of Fast Charged Particles in Matter. , 1977 .

[24]  Ch. Hiller,et al.  Über Die Justierung Ebener Strukturen Mittels Moiré , 1976 .

[25]  G. A. Coquin,et al.  Sensitive chlorine-containing resists for X-ray lithography , 1977 .

[26]  R A McCorkle Soft X-ray emission by an electron-beam-sliding-spark device , 1978 .

[27]  E. Spiller,et al.  X-ray Lithography , 1977, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology.

[28]  P.A. Sullivan,et al.  Determination of wavelength and excitation voltage for X-ray lithography , 1976, IEEE Transactions on Electron Devices.

[29]  M. Hatzakis,et al.  Performance characteristics of diazo-type photoresists under e-beam and optical exposure , 1978, IEEE Transactions on Electron Devices.

[30]  J. Pasiecznik,et al.  Digitally positioned mechanical stage , 1978 .

[31]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[32]  G. A. Coquin,et al.  Spurious effects caused by the continuous radiation and ejected electrons in x‐ray lithography , 1975 .

[33]  J. Greeneich,et al.  X-ray lithography: Part I—Design criteria for optimizing resist energy absorption; part II—Pattern replication with polymer masks , 1975, IEEE Transactions on Electron Devices.

[34]  H. Kramers,et al.  XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum , 1923 .

[35]  Henry I. Smith,et al.  Fabrication techniques for surface-acoustic-wave and thin-film optical devices , 1974 .

[36]  Dale C. Flanders,et al.  Replication of 175‐Å lines and spaces in polymethylmethacrylate using x‐ray lithography , 1980 .

[37]  R. E. Gegenwarth,et al.  Effect Of Plastic Deformation Of Silicon Wafers On Overlay , 1977, Other Conferences.

[38]  G. Gatti,et al.  Continuum Radiation Source of High Intensity , 1968 .

[39]  Arthur B. Glaser Integrated circuit engineering , 1977 .

[40]  M.C. Peckerar,et al.  Self aligned CMOS processing with Rh and Ag L line sources , 1978, 1978 International Electron Devices Meeting.

[41]  J. Greeneich Developer Characteristics of Poly‐(Methyl Methacrylate) Electron Resist , 1975 .

[42]  A. Charlesby Atomic Radiation and Polymers , 1960 .

[43]  M. E. Poulsen,et al.  X‐ray lithography source using a stationary solid Pd target , 1979 .

[44]  Henry I. Smith,et al.  Polyimide membrane x‐ray lithography masks—Fabrication and distortion measurements , 1978 .

[45]  Victor Rehn,et al.  Vacuum Ultraviolet (VUV) And Soft X-Ray Mirrors For Synchrotron Radiation , 1978 .

[46]  G. W. Kammlott,et al.  Sol–gel behavior and image formation in poly(glycidyl methacrylate) and its copolymers with ethyl acrylate , 1978 .

[47]  Larry F. Thompson,et al.  Fundamental aspects of electron beam lithography. I. Depth‐dose response of polymeric electron beam resists , 1973 .

[48]  T. Hayasaka,et al.  X‐ray exposure system using finely position adjusting apparatus , 1978 .

[49]  J. Angilello,et al.  Flash X-ray Microscopy , 1979, Science.

[50]  G. Shinoda,et al.  Proceedings of the Sixth International Conference on X-ray optics and microanalysis , 1972 .

[51]  M. Cantagrel,et al.  Argon ion etching in a reactive gas , 1973 .

[52]  Henry I. Smith,et al.  Alignment of x‐ray lithography masks using a new interferometric technique—Experimental results , 1978 .

[53]  G. Knoll Radiation detection and measurement , 1979 .

[54]  Eberhard Spiller,et al.  Replication of 0.1‐μm geometries with x‐ray lithography , 1975 .

[55]  David J. Nagel,et al.  Laser-Plasma Source For Pulsed X-Ray Lithography , 1978, Other Conferences.

[56]  T. Funayama,et al.  Abstract: New x‐ray mask of Al–Al2O3 structure , 1975 .

[57]  D. R. Heath,et al.  Cathodoluminescence assessment of GaAs1−x Px for light emitting diodes , 1972 .

[58]  D. Sayre,et al.  X-ray microscopy of biological objects with carbon kappa and with synchrotron radiation. , 1976, Science.

[59]  E. V. Weber,et al.  A high-throughput scanning-electron-beam lithography system, EL1, for semiconductor manufacture: General description , 1976, 1976 International Electron Devices Meeting.

[60]  Bernard Fay,et al.  X‐ray replication of masks using the synchrotron radiation produced by the ACO storage ring , 1976 .

[61]  Shinji Matsui,et al.  X‐ray lithography by synchrotron radiation of INS–ES , 1978 .

[62]  M C King,et al.  Photolithographic mask alignment using moiré techniques. , 1972, Applied optics.

[63]  B. Bracewell,et al.  Tables of X-Ray Mass Attenuation Coefficients for 87 Elements at Selected Wavelengths , 1971 .

[64]  John Crank,et al.  Diffusion in polymers , 1968 .

[65]  T. E. Everhart,et al.  Determination of Kilovolt Electron Energy Dissipation vs Penetration Distance in Solid Materials , 1971 .

[66]  D. C. Shaver,et al.  Surface relief structures with linewidths below 2000 Å , 1978 .

[67]  A. N. Broers,et al.  250‐Å linewidths with PMMA electron resist , 1978 .

[68]  Warren David Grobman,et al.  Application of synchrotron radiation to x‐ray lithography , 1976 .