Is Two-dimensional PCA a New Technique? 1)

The principal component analysis (PCA), or the eigenfaces method, is a de facto standard in human face recognition. Numerous algorithms tried to generalize PCA in different aspects. More recently, a technique called two-dimensional PCA (2DPCA) was proposed to cut the computational cost of the standard PCA. Unlike PCA that treats images as vectors, 2DPCA views an image as a matrix. With a properly defined criterion, 2DPCA results in an eigenvalue problem which has a much lower dimensionality than that of PCA. In this paper, we show that 2DPCA is equivalent to a special case of an existing feature extraction method, i.e., the block-based PCA. Using the FERET database, extensive experimental results demonstrate that block-based PCA outperforms PCA on datasets that consist of relatively simple images for recognition, while PCA is more robust than 2DPCA in harder situations.

[1]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  Daijin Kim,et al.  Face recognition using the embedded HMM with second-order block-specific observations , 2003, Pattern Recognit..

[3]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[4]  A. Martínez,et al.  The AR face databasae , 1998 .

[5]  Steve J. Young,et al.  HMM-based architecture for face identification , 1994, Image Vis. Comput..

[6]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[7]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[8]  Liwei Wang,et al.  The equivalence of two-dimensional PCA to line-based PCA , 2005, Pattern Recognit. Lett..

[9]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[10]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  I. Jolliffe Principal Component Analysis , 2002 .

[12]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[13]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[15]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[16]  Alex Pentland,et al.  Bayesian face recognition , 2000, Pattern Recognit..

[17]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[18]  Michel Vidal-Naquet,et al.  A Fragment-Based Approach to Object Representation and Classification , 2001, IWVF.

[19]  Jian Yang,et al.  From image vector to matrix: a straightforward image projection technique - IMPCA vs. PCA , 2002, Pattern Recognit..

[20]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..