Modelling Bid and Ask Prices Using Constrained Hawkes Processes: Ergodicity and Scaling Limit

We introduce a multivariate point process describing the dynamics of the Bid and Ask price of a financial asset. The point process is similar to a Hawkes process, with additional constraints on its intensity corresponding to the natural ordering of the best Bid and Ask prices. We study this process in the special case where the fertility function is exponential so that the process is entirely described by an underlying Markov chain including the constraint variable. Natural, explicit conditions on the parameters are established that ensure the ergodicity of the chain. Moreover, scaling limits are derived for the integrated point process.

[1]  Thomas Josef Liniger,et al.  Multivariate Hawkes processes , 2009 .

[2]  Trades and Quotes: A Bivariate Point Process , 1998 .

[3]  Patrick Hewlett Clustering of order arrivals , price impact and trade path optimisation , 2006 .

[4]  Emmanuel Bacry,et al.  Scaling limits for Hawkes processes and application to financial statistics , 2012, 1202.0842.

[5]  P. Reynaud-Bouret,et al.  Adaptive estimation for Hawkes processes; application to genome analysis , 2009, 0903.2919.

[6]  É. Moulines,et al.  Price Jump Prediction in Limit Order Book , 2011, 1204.1381.

[7]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[8]  Jeremy H. Large Measuring the resiliency of an electronic limit order book , 2007 .

[9]  J. Bouchaud,et al.  How Markets Slowly Digest Changes in Supply and Demand , 2008, 0809.0822.

[10]  P. Brémaud,et al.  STABILITY OF NONLINEAR HAWKES PROCESSES , 1996 .

[11]  Robert F. Engle,et al.  Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model , 1997 .

[12]  E. Bacry,et al.  Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data , 2011, 1112.1838.

[13]  Christine A. Parlour Price Dynamics in Limit Order Markets , 1998 .

[14]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[15]  Luc Bauwens,et al.  Département des Sciences Économiques de l'Université catholique de Louvain Modelling Financial High Frequency Data Using Point Processes , 2019 .

[16]  C. Gouriéroux,et al.  Intra-day market activity , 1999 .

[17]  Rama Cont,et al.  Price Dynamics in a Markovian Limit Order Market , 2011, SIAM J. Financial Math..

[18]  L. Gillemot,et al.  Statistical theory of the continuous double auction , 2002, cond-mat/0210475.

[19]  Burton Hollifield,et al.  Empirical Analysis of Limit Order Markets , 2001 .

[20]  Emmanuel Bacry,et al.  Modelling microstructure noise with mutually exciting point processes , 2011, 1101.3422.

[21]  Rama Cont,et al.  A Stochastic Model for Order Book Dynamics , 2008, Oper. Res..

[22]  Clive G. Bowsher Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models , 2003 .

[23]  P. Embrechts,et al.  Multivariate Hawkes processes: an application to financial data , 2011, Journal of Applied Probability.

[24]  John Shawe-Taylor,et al.  Multiple Kernel Learning on the Limit Order Book , 2010, WAPA.

[25]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[26]  R. Engle,et al.  Time and the Price Impact of a Trade , 1999 .

[27]  Luc Bauwens,et al.  Dynamic Latent Factor Models for Intensity Processes , 2004 .

[28]  Ioane Muni Toke,et al.  Modelling Trades-Through in a Limit Order Book Using Hawkes Processes , 2012 .

[29]  David Oakes,et al.  The Markovian self-exciting process , 1975, Journal of Applied Probability.

[30]  F. Lillo,et al.  What really causes large price changes? , 2003, cond-mat/0312703.

[31]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[32]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[33]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[34]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[35]  Aymen Jedidi,et al.  A Mathematical Approach to Order Book Modeling , 2010, 1010.5136.

[36]  Chester Spatt,et al.  An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse , 1995 .

[37]  Ioanid Roşu A Dynamic Model of the Limit Order Book , 2008 .

[38]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[39]  F. Abergel,et al.  Econophysics review: II. Agent-based models , 2011 .

[40]  A. Hawkes Point Spectra of Some Mutually Exciting Point Processes , 1971 .

[41]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[42]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[43]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[44]  F. Abergel,et al.  Econophysics review: I. Empirical facts , 2011 .