Substrate specificity and inhibition of UDP-GlcNAc:GlcNAcβ1-2Manα1-6R β1,6-N-acetylglucosaminyltransferase V using synthetic substrate analogues

[1]  I. Brockhausen,et al.  N-acetylglucosaminyltransferase substrates prepared from glycoproteins by hydrazinolysis of the asparagine-N-acetylglucosamine linkage. Purification and structural determination of oligosaccharides with mannose andN-acetylglucosamine at the non-reducing termini , 1988, Glycoconjugate Journal.

[2]  I. Brockhausen,et al.  Synthetic substrate analogues for UDP-GlcNAc: Manα1-6R β(1-2)-N-acetylglucosaminyltransferase II. Substrate specificity and inhibitors for the enzyme , 1994, Glycoconjugate Journal.

[3]  I. Brockhausen,et al.  Control of glycoprotein synthesis: substrate specificity of rat liver UDP-GlcNAc:Manα3R β2-N-acetylglucosaminyl-transferase I using synthetic substrate analogues , 1992, Glycoconjugate Journal.

[4]  M. Palcic,et al.  Acceptor-substrate recognition by N-acetyl-glucosaminyltransferase-V: Role of the mannose residue in βDGlcNAc(1→2)αDMan(1→6)βDGlcOR , 1994 .

[5]  M. Palcic,et al.  Key involvement of all three GlcNAc hydroxyl groups in the recognition of β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)-β-D-Glcp-OR by N-acetylglucosaminyltransferase-V , 1994 .

[6]  I. Brockhausen,et al.  Inhibition of UDP-GlcNAc:Gal beta 1-3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase from acute myeloid leukaemia cells by photoreactive nitrophenyl substrate derivatives. , 1994, Biochemical and biophysical research communications.

[7]  N. Niikawa,et al.  cDNA cloning and chromosomal mapping of human N-acetylglucosaminyltransferase V+. , 1994, Biochemical and biophysical research communications.

[8]  T. Feizi Oligosaccharides that mediate mammalian cell-cell adhesion , 1993 .

[9]  D. Wen,et al.  Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. , 1993, The Journal of biological chemistry.

[10]  S. Crawley,et al.  Recognition of the acceptor β-d-Glc pNAc-(1 → 2)-α-d-Manp(1 → 6)-β-d-Glc p-OR by N-acetylglucosaminyltransferase-V: None of the hydroxyl groups on the Glc-residue are important , 1993 .

[11]  H. Paulsen,et al.  Bausteine von Oligosacchariden, CVIII. Synthese von modifizierten Oligosacchariden derN-Glycoproteine zur Untersuchung der Substratspezifitäten derN-Acetylglucosaminyltransferasen III bis VI , 1993 .

[12]  J. Gu,et al.  Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta 1-6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line. , 1993, Journal of biochemistry.

[13]  S. Khan,et al.  Synthesis of 4-nitrophenyl O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→2)-O-(6-O-methyl-α-D-mannopyranosyl-(1→6)-β-D-glucopyranoside and its 4', 6'-di-O-methyl analog. Potential inhibitors of N-acetylglucosaminyl-transferase V (GnT-V) , 1993 .

[14]  M. Palcic,et al.  Acceptor-substrate recognition by N-acetylglucosaminyltransferase-V: Critical role of the 4″-hydroxyl group in β-d-GlcpNAc-(1 → 2)-α-d-Manp(1 → 6)-β-d-Glcp-OR , 1993 .

[15]  S. Khan,et al.  Synthesis of O-(2-Acetamido-2-Deoxy-β-D-Glucopyranosyl)-(l→2)-O-α-D-Mannopyranosyl-(l→6)-O-β-D-Glucopyranosyl-(1→4)-2-Acetamido-2-Deoxy-D-Glucopyranose. A Potential Acceptor-Substrate for N-Acetylglucosaminyltransferase-V (GnT-V) , 1993 .

[16]  A. Varki,et al.  Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[17]  S. Crawley,et al.  A trisaccharide acceptor analog for N-acetylglucosaminyltransferase V which binds to the enzyme but sterically precludes the transfer reaction. , 1993, The Journal of biological chemistry.

[18]  J. Dennis,et al.  Branching beta 1-6N-acetylglucosaminetransferases and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts. , 1993, The Journal of biological chemistry.

[19]  I. Brockhausen,et al.  Control of glycoprotein synthesis. Characterization of (1 → 4)-N-acetyl-β-d-glucosaminyltransferases acting on the α-d-(1 → 3)- and α-d-(1 → 6)-linked arms of N-linked oligosaccharides☆ , 1992 .

[20]  A. Geldof,et al.  The metastatic potential of rat prostate tumor variant R3327‐MatLyLu is correlated with an increased activity of N‐acetylglucosaminyl transferase III and V , 1992, FEBS letters.

[21]  A. Varki Selectins and other mammalian sialic acid-binding lectins. , 1992 .

[22]  M. Pierce,et al.  Purification and characterization of rat kidney UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase. , 1992, The Journal of biological chemistry.

[23]  M. Fukuda Cell Surface Carbohydrates and Cell Development , 1991 .

[24]  J. Bolscher,et al.  Enzymatic amplification involving glycosyltransferases forms the basis for the increased size of asparagine-linked glycans at the surface of NIH 3T3 cells expressing the N-ras proto-oncogene. , 1991, The Journal of biological chemistry.

[25]  M. Blaszczyk-Thurin,et al.  Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. , 1991, The Journal of biological chemistry.

[26]  I. Brockhausen,et al.  Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. , 1991, Cancer research.

[27]  I. Brockhausen,et al.  Biosynthesis of O-glycans in leukocytes from normal donors and from patients with leukemia: increase in O-glycan core 2 UDP-GlcNAc:Gal beta 3 GalNAc alpha-R (GlcNAc to GalNAc) beta(1-6)-N-acetylglucosaminyltransferase in leukemic cells. , 1991, Cancer research.

[28]  J. Dennis,et al.  Increased UDP-GlcNAc:Gal beta 1-3GaLNAc-R (GlcNAc to GaLNAc) beta-1, 6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. , 1991, The Journal of biological chemistry.

[29]  T. Nishiura,et al.  Modulation of N-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell line by interleukin 6. , 1990, Biochemical and biophysical research communications.

[30]  S. Khan,et al.  Synthesis of 4-nitrophenylO-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-O-(4-O-methyl-α-d-mannopyranosyl)-(1 → 6)-β-d-glucopyranoside. A potential specific acceptor-substrate forN-acetylglucosaminyltransferase-V (GnT V) , 1990 .

[31]  I. Brockhausen,et al.  Human Leukemic Myeloblasts and Myeloblastoid Cells Contain the Enzyme Cytidine 5′-Monophosphate-N-acetylneuraminic Acid:Galβ1-3GalNacα(2–3)-sialyltransferase , 1990 .

[32]  M. Palcic,et al.  Regulation of N-acetylglucosaminyltransferase V activity. Kinetic comparisons of parental, Rous sarcoma virus-transformed BHK, and L-phytohemagglutinin-resistant BHK cells using synthetic substrates and an inhibitory substrate analog. , 1990, The Journal of biological chemistry.

[33]  G. Alton,et al.  An enzyme-linked immunosorbent assay for N-acetylglucosaminyltransferase-V. , 1990, Analytical biochemistry.

[34]  S. Khan,et al.  Synthesis of some oligosaccharides containing the O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→2)-O-α-d-mannopyranosyl unit. Potential substrates for UDP-GlcNAc: α-d-mannopyranosyl-(1→6)-N-acetyl-β-d-glucosaminyl-transferase (GnT-V) , 1989 .

[35]  I. Brockhausen,et al.  Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc beta 1-6 (GlcNAc beta 1-2)Man alpha-R (GlcNAc to Man) beta-4-N-acetylglucosaminyltransferase VI. , 1989, The Journal of biological chemistry.

[36]  J. Dennis,et al.  Oncogenes conferring metastatic potential induce increased branching of Asn-linked oligosaccharides in rat2 fibroblasts. , 1989, Oncogene.

[37]  K. Hård,et al.  N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. , 1989, European journal of biochemistry.

[38]  J. Dennis,et al.  Oncodevelopmental Expression of —GlcNAcβ1–6Manα1-6Manβ1— Branched Asparagine-linked Oligosaccharides in Murine Tissues and Human Breast Carcinomas , 1989 .

[39]  A. Kobata Structural changes induced in the sugar chains of glycoproteins by malignant transformation of producing cells and their clinical application. , 1988, Biochimie.

[40]  I. Brockhausen,et al.  Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. , 1988, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[41]  D. H. van den Eijnden,et al.  Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide beta 1----3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. , 1988, The Journal of biological chemistry.

[42]  M. Pierce,et al.  Recognition of oligosaccharide substrates by N-acetyl-glucosaminyltransferase-V. , 1988, Carbohydrate research.

[43]  H. Schachter,et al.  Control of glycoprotein synthesis. Purification and characterization of rabbit liver UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I. , 1988, The Journal of biological chemistry.

[44]  M. Pierce,et al.  Comparison of N‐acetylglucosaminyltransferase V activities in Rous sarcoma‐transformed baby hamster kidney (RS‐BHK) and BHK cells , 1988, Journal of cellular biochemistry.

[45]  M. Pierce,et al.  The trisaccharide β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-β-d-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V , 1988 .

[46]  I. Brockhausen,et al.  Presence of cytidine 5'-monophospho-N-acetylneuraminic acid:Gal beta 1-3GalNAc-R alpha(2-3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. , 1987, Cancer research.

[47]  R. Kerbel,et al.  Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. , 1987, Science.

[48]  H. Schachter,et al.  Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. , 1987, The Journal of biological chemistry.

[49]  H. Schachter,et al.  Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. , 1987, The Journal of biological chemistry.

[50]  J. Arango,et al.  Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-beta (1,6)Man-alpha (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. , 1986, The Journal of biological chemistry.

[51]  I. Brockhausen,et al.  Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. , 1985, Blood.

[52]  A. Kobata,et al.  Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. , 1985, The Journal of biological chemistry.

[53]  I. Brockhausen,et al.  Mucin synthesis. UDP-GlcNAc:GalNAc-R beta 3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAc beta 1-3GalNAc-R (GlcNAc to GalNAc) beta 6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. , 1985, Biochemistry.

[54]  H. Schachter,et al.  Control of glycoprotein synthesis. IX. A terminal Man alpha l-3Man beta 1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: alpha-D-mannoside (GlcNAc to Man alpha 1-3) beta 2-N-acetylglucosaminyltransferase I. , 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[55]  R. Cummings,et al.  The distribution of repeating [Gal beta 1,4GlcNAc beta 1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. , 1984, The Journal of biological chemistry.

[56]  L. Smets,et al.  Carbohydrates of the tumor cell surface. , 1984, Biochimica et biophysica acta.

[57]  N. Taniguchi,et al.  Comparative study of the sugar chains of gamma-glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells. , 1983, Cancer research.

[58]  P. Gleeson,et al.  Control of glycoprotein synthesis. , 1983, The Journal of biological chemistry.

[59]  R. Cummings,et al.  A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. , 1982, The Journal of biological chemistry.

[60]  S. Narasimhan Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. , 1982, The Journal of biological chemistry.