A preference for a non-zero neutrino mass from cosmological data

We present results from the analysis of cosmic microwave background (CMB), large-scale structure (galaxy redshift survey) and X-ray galaxy cluster (baryon fraction and X-ray luminosity function) data, assuming a geometrically flat cosmological model and allowing for tensor components and a non-negligible neutrino mass. From a combined analysis of all data, assuming three degenerate neutrino species, we measure a contribution of neutrinos to the energy density of the Universe, Omega(nu)h(2) = 0.0059(-0.0027)(+0.0033) (68 per cent confidence limits), with zero falling on the 99 per cent confidence limit. This corresponds to similar to4 per cent of the total mass density of the Universe and implies a species-summed neutrino mass Sigma(i)m(i) = 0.56(-0.26)(+0.30) eV, or m(nu) similar to 0.2 eV per neutrino. We examine possible sources of systematic uncertainty in the results. Combining the CMB, large-scale structure and cluster baryon fraction data, we measure an amplitude of mass fluctuations on 8 h(-1) Mpc scales of sigma(8) = 0.74(-0.07)(+0.12), which is consistent with measurements based on the X-ray luminosity function and other studies of the number density and evolution of galaxy clusters. This value is lower than that obtained when fixing a negligible neutrino mass (sigma(8) = 0.86(-0.07)(+0.08)). The combination of CMB, large-scale structure and cluster baryon fraction data also leads to remarkably tight constraints on the Hubble constant, H-0 = 68.4(-1.4)(+2.0) km s(-1) Mpc(-1), mean matter density, Omega(m) = 0.31 +/- 0.02, and physical baryon density, Omega(b) h(2) = 0.024 +/- 0.001, of the Universe.

[1]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, The Astrophysical Journal.

[2]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[3]  O. Lahav,et al.  Precision Cosmology? Not Just Yet . . . , 2003, Science.

[4]  S. Hannestad Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.

[5]  O. Lahav,et al.  Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors , 2003, astro-ph/0303089.

[6]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[7]  J. Weller,et al.  Reconstructing the primordial power spectrum , 2003, astro-ph/0302306.

[8]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[9]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[11]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[12]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[13]  S. Borgani,et al.  On determining the cluster abundance normalization , 2002, astro-ph/0210567.

[14]  Heidelberg,et al.  The shear power spectrum from the COMBO-17 survey , 2002, astro-ph/0210213.

[15]  S. Allen,et al.  Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters , 2002, astro-ph/0208394.

[16]  L. Guzzo,et al.  The REFLEX galaxy cluster survey - VII. Omega(m) and sigma(8) from cluster abundance and large-scale clustering , 2002, astro-ph/0208251.

[17]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[18]  Michael E. Jones,et al.  Cosmological parameter estimation and Bayesian model comparison using Very Small Array data , 2002, astro-ph/0212497.

[19]  G. Bernstein,et al.  Weak Lensing Results from the 75 Square Degree CTIO Survey , 2002, astro-ph/0210604.

[20]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[21]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[22]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[23]  S. Allen,et al.  Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra , 2002, astro-ph/0205007.

[24]  Z. Fodor,et al.  Determination of absolute neutrino masses from bursts of Z bosons in cosmic rays. , 2002, Physical review letters.

[25]  D. Madgwick,et al.  New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey. , 2002, Physical review letters.

[26]  J. Rhodes,et al.  Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope , 2002, astro-ph/0203131.

[27]  Y. Mellier,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Likelihood Analysis of Cosmic Shear on Simulated and VIRMOS-DESCART Data ⋆ , 2002 .

[28]  L. Guzzo,et al.  The ROSAT-ESO Flux-limited X-Ray (REFLEX) Galaxy Cluster Survey. IV. The X-Ray Luminosity Function , 2002 .

[29]  R. Kouzes,et al.  Comment on "Evidence for Neutrinoless Double Beta Decay" , 2002, hep-ex/0202018.

[30]  F. Vissani,et al.  Neutrino oscillations and signals in beta and 0nu2beta experiments , 2002, hep-ph/0201291.

[31]  R. Nichol,et al.  Constraining the Matter Power Spectrum Normalization Using the Sloan Digital Sky Survey/ROSAT All-Sky Survey and REFLEX Cluster Surveys , 2001, astro-ph/0111394.

[32]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[33]  H. Klapdor-kleingrothaus,et al.  Status of Evidence for Neutrinoless Double Beta Decay , 2002 .

[34]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[35]  D. H. White,et al.  Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam , 2001, hep-ex/0104049.

[36]  J. Mohr,et al.  Effects of Preheating on X-Ray Scaling Relations in Galaxy Clusters , 2000, astro-ph/0010584.

[37]  J. Huchra,et al.  The ROSAT Brightest Cluster Sample - IV. The extended sample , 2000, astro-ph/0003191.

[38]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[39]  Sugiyama,et al.  Limits on neutrino mass from cosmic structure formation , 1999, Physical review letters.

[40]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[41]  L. Bornschein,et al.  High precision measurement of the tritium β spectrum near its endpoint and upper limit on the neutrino mass , 1999 .

[42]  B. Mele,et al.  Ultra-High-Energy Neutrino Scattering onto Relic Light Neutrinos in the Galactic Halo as a Possible Source of the Highest Energy Extragalactic Cosmic Rays , 1999 .

[43]  Minoru Yoshida,et al.  Measurement of the Solar Neutrino Energy Spectrum Using Neutrino – Electron Scattering The Super-Kamiokande Collaboration , 1998 .

[44]  T. Weiler Cosmic-ray neutrino annihilation on relic neutrinos revisited: a mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cutoff , 1997, hep-ph/9710431.

[45]  ApJ, in press , 1999 .

[46]  J. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998, astro-ph/9807103.

[47]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[48]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[49]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[50]  C. Frenk,et al.  The Evolution of X-Ray Clusters in a Low-Density Universe , 1997, astro-ph/9708070.

[51]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[52]  R. Cen,et al.  X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation , 1994, astro-ph/9404012.