Closed-Loop Performance Control of DBD Plasma Actuators

The impact of fluctuating airflow conditions on the performance of dielectric barrier discharge (DBD) plasma actuators is suppressed using a novel closed-loop performance control procedure. The goal of controlling the plasma actuator performance online and in-situ is achieved and successfully demonstrated. This novel approach represents a first step towards optimal discharge based flow control, since beyond the common purpose of favorably manipulating the airflow, any advanced DBD-based flow control system will necessarily require an appropriate closed-loop performance control of the discharge device.

[1]  Sergey B. Leonov,et al.  Near-Surface Electrical Discharge in Supersonic Airflow : Properties and Flow Control , 2008 .

[2]  Cameron Tropea,et al.  Influence of air flow on the performance of DBD Plasma Actuators , 2012 .

[3]  Huimin Song,et al.  Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics , 2008 .

[4]  Takashi Abe,et al.  Experimental Study for Momentum Transfer in a Dielectric Barrier Discharge Plasma Actuator , 2008 .

[5]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[6]  Hiroki Nagai,et al.  Evaluation of Plasma Actuator Performance in Martian Atmosphere for Applications to Mars Airplanes , 2008 .

[7]  Cameron Tropea,et al.  Unmanned Aerial Vehicle (UAV) with Plasma Actuators for Separation Control , 2009 .

[8]  Subrata Roy,et al.  Preliminary Experiments of Barrier Discharge Plasma Actuators using Dry and Humid Air , 2006 .

[9]  E. Moreau,et al.  Electric Wind Produced by a Single Dielectric Barrier Discharge Actuator Operating in Atmospheric Flight Conditions - Pressure Outcome , 2008 .

[10]  Huu Duc Vo,et al.  Impact of Pressure and Temperature on the Performance of Plasma Actuators , 2010 .

[11]  James W. Gregory,et al.  Force Production Mechanisms of a Dielectric-Barrier Discharge Plasma Actuator , 2007 .

[12]  Louis N. Cattafesta,et al.  Actuators for Active Flow Control , 2011 .

[13]  Gabriele Neretti,et al.  DBD Plasma Actuators Driven by a Combination of Low Frequency Bias Voltage and Nanosecond Pulses , 2008 .

[14]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[15]  Cameron Tropea,et al.  Dielectric- Barrier Discharge Plasmas for Flow Control at Higher Mach Numbers , 2010 .

[16]  Cameron Tropea,et al.  Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators , 2011 .

[17]  Cameron Tropea,et al.  Performance Reduction of Dielectric Barrier Discharge Plasma Actuators at Higher Mach Numbers , 2013 .

[18]  Cameron Tropea,et al.  Online-characterization of dielectric barrier discharge plasma actuators for optimized efficiency of aerodynamical flow control applications , 2011 .

[19]  Takashi Abe,et al.  A Parametric Experimental Study for Momentum Transfer by Plasma Actuator , 2007 .

[20]  Eric Moreau,et al.  Electric Wind Produced by a Surface Dielectric Barrier Discharge Operating Over a Wide Range of Relative Humidity , 2009 .

[21]  Pénélope Leyland,et al.  Effects of high-speed airflows on a surface dielectric barrier discharge , 2007 .

[22]  S. Wilkinson,et al.  Dielectric Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[23]  Eric Moreau,et al.  Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights , 2008 .

[24]  Cameron Tropea,et al.  Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators , 2011 .

[25]  C. Tropea,et al.  In-flight Transition Delay with DBD Plasma Actuators , 2013 .

[26]  C. Tropea,et al.  Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators , 2012 .