The Constructor Metacognitive Architecture

A true human-level learner should be able to deliberately construct its own knowledge, its processes of reasoning resulting in a new knowledge, its system of values and goals, and the scenario of its cognitive growth. These capabilities require a cognitive architecture of a new kind that supports metacognition, self-awareness and self-regulation. An example architecture design called Constructor is described in this work. The main distinguishing feature of this architecture is its virtually unlimited self-regulated cognitive growth ability. Other features include metacognition, self-awareness, and an intrinsic embodiment in virtual reality that is used, e.g., for active construction of cognitive and learning processes.

[1]  A. Newell Unified Theories of Cognition , 1990 .

[2]  I. Prigogine,et al.  Exploring Complexity: An Introduction , 1989 .

[3]  John C. Nesbit,et al.  Supporting Self-Regulated Learning with Cognitive Tools , 2009 .

[4]  簡聰富,et al.  物件導向軟體之架構(Object-Oriented Software Construction)探討 , 1989 .

[5]  John E. Laird Preface for Special Section on Integrated Cognitive Architectures , 1991, SGAR.

[6]  John McCarthy,et al.  A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955 , 2006, AI Mag..

[7]  Philip H. Winne,et al.  Measuring Self-Regulated Learning , 2000 .

[8]  Pierre Teilhard de Chardin,et al.  Le phénomène humain , 1955 .

[9]  Ron Sun,et al.  Cognition and Multi-Agent Interaction: The CLARION Cognitive Architecture: Extending Cognitive Modeling to Social Simulation , 2005 .

[10]  Michael B. Miller,et al.  Neural Correlates of Detecting Pretense: Automatic Engagement of the Intentional Stance under Covert Conditions , 2004, Journal of Cognitive Neuroscience.

[11]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[12]  R. O’Reilly,et al.  Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain , 2000 .

[13]  Aaron Sloman,et al.  AN ALTERNATIVE TO WORKING ON MACHINE CONSCIOUSNESS , 2010 .

[14]  Kenneth A. De Jong,et al.  Designing A Self-Aware Neuromorphic Hybrid , 2005 .

[15]  G. Miller The cognitive revolution: a historical perspective , 2003, Trends in Cognitive Sciences.

[16]  Kim W. Tracy,et al.  Object-oriented artificial intelligence using C++ , 1996 .

[17]  B. Zimmerman Investigating Self-Regulation and Motivation: Historical Background, Methodological Developments, and Future Prospects , 2008, American Educational Research Journal.

[18]  Hubert D. Zimmer,et al.  Memory for Action: A Distinct Form of Episodic Memory? , 2001 .

[19]  Frank E. Ritter,et al.  Techniques for modelling human performance in synthetic environments : A supplementary review , 1999 .

[20]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[21]  Ron Chrisley Artificial Intelligence: Critical Concepts , 2000 .

[22]  Mel Slater,et al.  Using Presence Questionnaires in Reality , 2000, Presence: Teleoperators & Virtual Environments.

[23]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[24]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[25]  S. Gallagher Philosophical conceptions of the self: implications for cognitive science , 2000, Trends in Cognitive Sciences.

[26]  Douglas J. Hacker,et al.  Handbook of Metacognition in Education , 2009 .

[27]  J. Gregory Trafton,et al.  Incorporating Mental Simulation for a More Effective Robotic Teammate , 2008, AAAI.

[28]  P. Pintrich,et al.  Handbook of self-regulation , 2000 .

[29]  J. Gregory Trafton,et al.  Integrating cognition, perception and action through mental simulation in robots , 2004, Robotics Auton. Syst..

[30]  Yolanda Gil,et al.  Incorporating tutoring principles into interactive knowledge acquisition , 2007, Int. J. Hum. Comput. Stud..

[31]  Frank E. Ritter,et al.  The Rise of Cognitive Architectures , 2007, Integrated Models of Cognitive Systems.

[32]  Stan Franklin,et al.  A Foundational Architecture for Artificial General Intelligence , 2007, AGI.

[33]  D. Povinelli,et al.  Further reflections on self-recognition in primates , 1995, Animal Behaviour.

[34]  B. Zimmerman Attaining self-regulation: A social cognitive perspective. , 2000 .

[35]  Ben Goertzel,et al.  Artificial General Intelligence 2008, Proceedings of the First AGI Conference, AGI 2008, March 1-3, 2008, University of Memphis, Memphis, TN, USA , 2008, AGI.

[36]  Kenneth A. De Jong,et al.  Integrated Hybrid Cognitive Architecture for a Virtual Roboscout , 2006 .

[37]  Roger Azevedo,et al.  Detecting, Tracking, and Modeling Self-Regulatory Processes during Complex Learning with Hypermedia , 2008, AAAI Fall Symposium: Biologically Inspired Cognitive Architectures.

[38]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[39]  Tom Michael Mitchell,et al.  Mind Matters : A Tribute To Allen Newell , 1996 .

[40]  John E. Laird,et al.  Flexibly Instructable Agents , 1995, J. Artif. Intell. Res..

[41]  E. Tulving Elements of episodic memory , 1983 .

[42]  Ben Goertzel,et al.  Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006 , 2007 .

[43]  Chris Moore,et al.  The Self in Time: Developmental Perspectives , 2001 .

[44]  P. Winston,et al.  CHIP : A Cognitive Architecture for Comprehensive Human Intelligence and Performance A Report of the CHIP Project : , 2006 .

[45]  Mel Slater,et al.  Depth of Presence in Virtual Environments , 1994, Presence: Teleoperators & Virtual Environments.

[46]  Rene J. de Pontbriand,et al.  Modeling Human Behavior with Integrated Cognitive Architectures: Comparison, Evaluation, and Validation Edited by Kevin A. Gluck & Richard A. Pew 2005, 440 pages, $55.00 Mahwah, NJ: Lawrence Erlbaum Associates ISBN 0-8058-5048-1 , 2007 .

[47]  Richard W. Pew,et al.  Modeling human and organizational behavior : application to military simulations , 1998 .

[48]  Andrea Lockerd Thomaz,et al.  Using perspective taking to learn from ambiguous demonstrations , 2006, Robotics Auton. Syst..

[49]  Peter Funk,et al.  Frontiers in Artificial Intelligence and Applications Volume 173 , 2008 .

[50]  Peter J. Denning,et al.  Machines, Languages, And Computation , 1978 .

[51]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[52]  Gerardo Herrera,et al.  Agency and Presence: A Common Dependence on Subjectivity? , 2006, PRESENCE: Teleoperators and Virtual Environments.

[53]  Cynthia Breazeal,et al.  Learning From and About Others: Towards Using Imitation to Bootstrap the Social Understanding of Others by Robots , 2005, Artificial Life.

[54]  Clare Bates Congdon,et al.  The Soar User''''s Manual , 1986 .

[55]  David E. Kieras,et al.  A computational theory of executive cognitive processes and multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. , 1997 .

[56]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[57]  John R. Anderson,et al.  The SAL Integrated Cognitive Architecture , 2008, AAAI Fall Symposium: Biologically Inspired Cognitive Architectures.

[58]  A. Damasio The feeling of what happens , 2001 .

[59]  Randolph M. Jones,et al.  Automated Intelligent Pilots for Combat Flight Simulation , 1998, AI Mag..

[60]  Alexei V. Samsonovich,et al.  Fundamental Principles and Mechanisms of the Conscious Self , 2005, Cortex.

[61]  Alexei V. Samsonovich Biologically inspired cognitive architectures : papers from the AAAI Fall Symposium , 2008 .

[62]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[63]  B. Zimmerman Self-Regulated Learning and Academic Achievement: An Overview , 1990 .

[64]  Pentti O. A. Haikonen,et al.  Reflections of Consciousness: The Mirror Test , 2007, AAAI Fall Symposium: AI and Consciousness.

[65]  Y. Gil,et al.  Developing a Meta-Level Problem Solver for Integrated Learners , 2008 .

[66]  F. Gregory The conscious mind: In search of a fundamental theory , 1998 .

[67]  Kenneth de Jong,et al.  THE MENTAL STATE FORMALISM OF GMU-BICA , 2009 .

[68]  Arthur C. Graesser,et al.  Organizing Instruction and Study to Improve Student Learning. IES Practice Guide. NCER 2007-2004. , 2007 .

[69]  John E. Laird,et al.  Extending the Soar Cognitive Architecture , 2008, AGI.

[70]  D. Thouless,et al.  Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems , 1979 .