Band structures of delafossite transparent conductive oxides from a self-consistent GW approach

We present a comparative study of the electronic band structures of the compounds CuMO2 M=B,Al,In,Ga which belong to the family of delafossite transparent conductive oxides. The theoretical approaches we use are the standard local-density approximation LDA to density-functional theory, LDA + U, hybrid functionals, and perturbative GW on top of LDA or self-consistent Coulomb hole plus screened exchange calculations. The latter approach, state-of-the-art theoretical approach for quasiparticle band structures, predicts direct band gaps that are compatible with experimental optical gaps only after including the strong polaronic and excitonic effects present in these materials. For what concerns the so-called band-gap anomaly of delafossite compounds, we find that GW approaches yield the same qualitative trends with increasing anion atomic number as the LDA: accounting for the oscillator strength at the absorption edge is the key to explain the experimental trend. None of the methods that we applied beyond the simple LDA is in agreement with the small indirect gaps found by many early experiments. This supports the recent view that the absorption bands identified as a sign of the indirect experimental gaps are likely due to defect states in the gap and are not a property of the pristine material.

[1]  L. Reining,et al.  Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study. , 2010, Physical review letters.

[2]  R. Laskowski,et al.  Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches , 2010 .

[3]  F. Bruneval,et al.  Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides. , 2009, Physical review letters.

[4]  A. Zakutayev,et al.  Origin of p-type conduction in single-crystal CuAlO2 , 2009 .

[5]  A. Walsh,et al.  Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis , 2009 .

[6]  Stefano Baroni,et al.  Optimal representation of the polarization propagator for large-scale GW calculations , 2009 .

[7]  P. Blaha,et al.  Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides , 2009 .

[8]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[9]  Jingbo Li,et al.  First-principles study of p-type transparent conductive oxides CuXO2 (X=Y, Sc, and Al) , 2008 .

[10]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[11]  Michael Nolan,et al.  Defects in Cu2O, CuAlO2 and SrCu2O2 transparent conducting oxides , 2008 .

[12]  Georg Kresse,et al.  Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .

[13]  X. Gonze,et al.  Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems , 2008 .

[14]  Edward N Brothers,et al.  Accurate solid-state band gaps via screened hybrid electronic structure calculations. , 2008, The Journal of chemical physics.

[15]  G. Rignanese,et al.  Band offsets at the Si/SiO2 interface from many-body perturbation theory. , 2008, Physical review letters.

[16]  S. Louie,et al.  GW quasiparticle corrections to the LDA+U/GGA+U electronic structure of bcc hydrogen , 2008 .

[17]  J. Sánchez-Royo,et al.  Electronic structure of p-type ultraviolet-transparent conducting CuSCO2 films , 2008 .

[18]  Lucia Reining,et al.  Understanding correlations in vanadium dioxide from first principles. , 2007, Physical review letters.

[19]  J. Robertson,et al.  Electronic structures and doping of SnO2, CuAlO2, and CuInO2 , 2007 .

[20]  A. Tiwari,et al.  CuBO2: A p-type transparent oxide , 2007 .

[21]  Georg Kresse,et al.  Why does the B3LYP hybrid functional fail for metals? , 2007, The Journal of chemical physics.

[22]  F. Shieu,et al.  Characterization and optoelectronic properties of p-type N-doped CuAlO2 films , 2007 .

[23]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[24]  T. Y. Kim,et al.  Electronic structure of CuAlO2 and CuScO2 delafossites under pressure , 2007 .

[25]  Lucia Reining,et al.  Exchange and correlation effects in electronic excitations of Cu(2)O. , 2006, Physical review letters.

[26]  T. Kotani,et al.  Quasiparticle self-consistent GW method : A basis for the independent-particle approximation , 2006, cond-mat/0611002.

[27]  Lucia Reining,et al.  Effect of self-consistency on quasiparticles in solids , 2006 .

[28]  A. Gilliland,et al.  On the band gap of CuAlO2 delafossite , 2006 .

[29]  F. Bechstedt,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2006, cond-mat/0604447.

[30]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[31]  F. Bechstedt,et al.  Quasiparticle bands and optical spectra of highly ionic crystals: AlN and NaCl , 2005 .

[32]  Chandan Kumar Ghosh,et al.  Electro-optical characteristics and field-emission properties of reactive DC-sputtered p-CuAlO2+x thin films , 2005 .

[33]  R. Egdell,et al.  High-resolution x-ray spectroscopic study of the electronic structure of the prototypical p-type transparent conducting oxide CuAlO2 , 2005 .

[34]  K. Poeppelmeier,et al.  Point defects and transport mechanisms in transparent conducting oxides of intermediate conductivity , 2005 .

[35]  E. M. Alkoy,et al.  The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets , 2005 .

[36]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[37]  K. Chattopadhyay,et al.  Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films , 2005 .

[38]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[39]  T. Kotani,et al.  Quasiparticle self-consistent GW theory. , 2005, Physical review letters.

[40]  M. Scheffler,et al.  Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors , 2005, cond-mat/0502404.

[41]  D. W. Readey,et al.  A simple method for the preparation of transparent p-type Ca-doped CuInO2 films: Pulsed-laser deposition from air-sintered Ca-doped Cu2In2O5 targets , 2004 .

[42]  M. Lux‐Steiner,et al.  Photovoltage characterization of CuAlO2 crystallites , 2004 .

[43]  H. Gong,et al.  Effects of aluminum on the properties of p-type Cu–Al–O transparent oxide semiconductor prepared by reactive co-sputtering , 2003 .

[44]  H. Ohta,et al.  Frontier of transparent oxide semiconductors , 2003 .

[45]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2003, Physical review letters.

[46]  M. Shimode,et al.  Fabrication of bipolar CuInO2 with delafossite structure , 2003 .

[47]  Kalyan Kumar Chattopadhyay,et al.  Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering , 2003 .

[48]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[49]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[50]  J. Robertson,et al.  Electronic structure of p-type conducting transparent oxides , 2002 .

[51]  S. Zhang,et al.  Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. , 2002, Physical review letters.

[52]  H. Ohta,et al.  Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure , 2001 .

[53]  A. Freeman,et al.  Electronic structure and small polaron hole transport of copper aluminate , 2001 .

[54]  H. Hosono,et al.  Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure , 2001 .

[55]  H. Ohta,et al.  Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition , 2001 .

[56]  H. Hosono,et al.  Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2 , 2000 .

[57]  M. Jayaraj,et al.  Transparent p-type conducting CuScO2+x films , 2000 .

[58]  Hideo Hosono,et al.  Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions , 2000 .

[59]  E. Ruiz,et al.  Electronic Structure and Bonding in CuMO2 (M = Al, Ga, Y) Delafossite-Type Oxides: An Ab Initio Study , 1999 .

[60]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[61]  U. V. Barth,et al.  Fully self-consistent GW self-energy of the electron gas , 1998 .

[62]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[63]  G. Thomas Materials science: Invisible circuits , 1997, Nature.

[64]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[67]  R. Needs,et al.  Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. , 1989, Physical review letters.

[68]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[69]  Aron Walsh,et al.  Group-IIIA versus IIIB delafossites: Electronic structure study , 2009 .

[70]  Dongho Kim,et al.  Refractive index of the CuAlO2 delafossite , 2008 .

[71]  Kalyan Kumar Chattopadhyay,et al.  Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films , 2005 .

[72]  K. Chattopadhyay,et al.  Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering , 2004 .

[73]  W. Aulbur,et al.  Quasiparticle calculations in solids , 2000 .

[74]  L. Hedin,et al.  Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids , 1969 .