On contraction and the modal fragment

We observe that removing contraction from a standard sequent calculus for first-order predicate logic preserves completeness for the modal fragment. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Richard W. Weyhrauch,et al.  A Decidable Fragment of Predicate Calculus , 1984, Theor. Comput. Sci..

[2]  Andrea Cantini,et al.  The Undecidability of Grisin's Set Theory , 2003, Stud Logica.

[3]  V. N. Grisin PREDICATE AND SET-THEORETIC CALCULI BASED ON LOGIC WITHOUT CONTRACTIONS , 1982 .

[4]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[5]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[6]  Melvin Fitting,et al.  Modal proof theory , 2007, Handbook of Modal Logic.

[7]  Uwe Petersen,et al.  Logic Without Contraction as Based on Inclusion and Unrestricted Abstraction , 2000, Stud Logica.

[8]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.