Status and challenges of phase change memory modeling

Phase change memory (PCM) is the most performing non-volatile memory-technology alternative to FLASH. In order to design optimized cells, in term of geometry and materials, for present and future technological nodes, physics-based models for readout, programming and data retention are required. In this work, transport and phase-change modeling in PCM cell is reviewed and used to discuss (1) the programming-current reduction through geometry optimization, (2) the trade-off between programming current and readout resistance and (3) the program disturb phenomenon. In particular, scaling of PCM is extensively investigated, comparing the impact of isotropic and non-isotropic scaling on cell programming-current and program-disturb. Recent developments and open issues in PCM physical modeling are finally presented.

[1]  Kinam Kim,et al.  Highly reliable 50nm contact cell technology for 256Mb PRAM , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[2]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[3]  S.Y. Lee,et al.  Writing current reduction for high-density phase-change RAM , 2003, IEEE International Electron Devices Meeting 2003.

[4]  Kinam Kim,et al.  Highly manufacturable high density phase change memory of 64Mb and beyond , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[5]  S. Lee,et al.  A novel cell technology using N-doped GeSbTe films for phase change RAM , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[6]  C. Peng,et al.  Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media , 1997 .

[7]  D. Ielmini,et al.  Physics-based analytical model of chalcogenide-based memories for array simulation , 2006, 2006 International Electron Devices Meeting.

[8]  Stanford R. Ovshinsky,et al.  Simple band model for amorphous semiconducting alloys , 1969 .

[9]  R. Bez,et al.  Current status of chalcogenide phase change memory , 2005, 63rd Device Research Conference Digest, 2005. DRC '05..

[10]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[11]  M. Breitwisch,et al.  Novel One-Mask Self-Heating Pillar Phase Change Memory , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[12]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[13]  K. Osada,et al.  A GeSbTe phase-change memory cell featuring a tungsten heater electrode for low-power, highly stable, and short-read-cycle operations , 2003, IEEE International Electron Devices Meeting 2003.

[14]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[15]  Chung Lam,et al.  Phase-Change Memory Development Status , 2007, 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[16]  A. Pirovano,et al.  Statistical analysis and modeling of programming and retention in PCM arrays , 2007, 2007 IEEE International Electron Devices Meeting.

[17]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[18]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[19]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[20]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[21]  J. Kim,et al.  Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[22]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[23]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[24]  Daniele Ielmini,et al.  Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses , 2007 .

[25]  B. Gleixner,et al.  A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[26]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[27]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[28]  Roberto Bez,et al.  "Effects of the crystallization statistics on programming distributions in phase-change memory arrays" , 2007 .

[29]  D. Ielmini,et al.  Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation , 2007, 2007 IEEE International Electron Devices Meeting.

[30]  Daniele Ielmini,et al.  "Geometry and material optimization for programming current scaling in phase-change memory" , 2007 .