A simplified axiomatic approach to ambiguity aversion

This paper takes the Anscombe–Aumann framework with horse and roulette lotteries, and applies the Savage axioms to the horse lotteries and the von Neumann–Morgenstern axioms to the roulette lotteries. The resulting representation of preferences yields a subjective probability measure over states and two utility functions, one governing risk attitudes and one governing ambiguity attitudes. The model is able to accommodate the Ellsberg paradox and preferences for reductions in ambiguity.

[1]  G. Francis Foundations of Statistics Week 10: Regression , 2012 .

[2]  A simple axiomatization of risk-averse expected utility , 2005 .

[3]  Haluk Ergin,et al.  A theory of subjective compound lotteries , 2009, J. Econ. Theory.

[4]  Haluk Ergin,et al.  A subjective theory of compound lotteries , 2003 .

[5]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[6]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[7]  Evan L. Porteus,et al.  Temporal Resolution of Uncertainty and Dynamic Choice Theory , 1978 .

[8]  Soo Hong Chew,et al.  Small worlds: Modeling attitudes toward sources of uncertainty , 2008, J. Econ. Theory.

[9]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[10]  Larry G. Epstein,et al.  Subjective Probabilities on Subjectively Unambiguous Events , 2001 .

[11]  I. Gilboa Expected utility with purely subjective non-additive probabilities , 1987 .

[12]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[13]  David S. Ahn Ambiguity without a state space , 2004 .

[14]  I. Gilboa,et al.  Objective and Subjective Rationality in a Multiple Prior Model , 2010 .

[15]  W. Horsley Gantt,et al.  The objective and the subjective , 1977, The Pavlovian Journal of Biological Science.

[16]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[17]  G. Hazen,et al.  Ambiguity aversion in the small and in the large for weighted linear utility , 1991 .

[18]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[19]  Robert F. Nau,et al.  Uncertainty Aversion with Second-Order Utilities and Probabilities , 2006, Manag. Sci..

[20]  Second-Order Expected Utility , 2009 .

[21]  Tomasz Strzalecki,et al.  Axiomatic Foundations of Multiplier Preferences , 2009 .

[22]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[23]  William S. Neilson Ambiguity Aversion: An Axiomatic Approach Using Second Order Probabilities , 1993 .

[24]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[25]  Rakesh K. Sarin,et al.  A SIMPLE AXIOMATIZATION OF NONADDITIVE EXPECTED UTILITY , 1992 .

[26]  Jean-Michel Grandmont,et al.  Continuity properties of a von Neumann-Morgenstern utility , 1972 .

[27]  Gordon B. Hazen,et al.  Subjectively weighted linear utility , 1987 .

[28]  D. G. Rees,et al.  Foundations of Statistics , 1989 .