Numerical investigation on the effect of thickness and stress level on fatigue crack growth in notched specimens

[1]  S. Ishihara,et al.  Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy , 2021, Materials.

[2]  S. Tsutsumi,et al.  An interaction integral retardation model for predicting fatigue life under multi-step loading , 2020 .

[3]  N. Osawa,et al.  Accurate evaluation of fracture parameters for a surface-cracked tubular T-joint taking welding residual stress into account , 2020 .

[4]  H. Ji,et al.  Fatigue crack propagation experiment and numerical simulation of 42CrMo steel , 2020 .

[5]  M. Graba The Characteristics of Selected Triaxiality Measures of the Stresses for a C(T) Specimen Dominated by the Plane Strain State , 2020 .

[6]  S. Tsutsumi,et al.  Critical investigation on the effect of steel strength on fatigue crack growth retardation including a single tensile overload , 2019 .

[7]  M. Enoki,et al.  Prediction of Cyclic Stress–Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning , 2019, Materials.

[8]  M. Graba The Characterization of the Stress Fields Near a Crack Tip for a Compact Specimen for Elastic-Plastic Materials Dominated by the Plane Strain State , 2019, International Journal of Applied Mechanics and Engineering.

[9]  L. Anand,et al.  A gradient-damage theory for fracture of quasi-brittle materials , 2019, Journal of the Mechanics and Physics of Solids.

[10]  N. Osawa,et al.  Critical investigation on the influence of welding heat input and welding residual stress on stress intensity factor and fatigue crack propagation , 2018, Engineering Failure Analysis.

[11]  N. Osawa,et al.  A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method , 2018 .

[12]  L. C. H. Ricardo Crack Propagation by Finite Element Method , 2017 .

[13]  Martin Leitner,et al.  In-situ crack propagation measurement of high-strength steels including overload effects , 2017 .

[14]  B. Moreno,et al.  Numerical and experimental study of the plastic zone in cracked specimens , 2017 .

[15]  M. Vormwald,et al.  Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry , 2017 .

[16]  N. Osawa,et al.  Evaluation of stress intensity factor for a surface cracked butt welded joint based on real welding residual stress , 2017 .

[17]  M. Madia,et al.  Fatigue strength and fracture mechanics – A general perspective , 2017, Engineering Fracture Mechanics.

[18]  M. Besel,et al.  Advanced analysis of crack tip plastic zone under cyclic loading , 2016 .

[19]  A. L. Ramalho,et al.  A numerical study of non-linear crack tip parameters , 2015 .

[20]  Xu Chen,et al.  Fatigue crack growth law of API X80 pipeline steel under various stress ratios based on J‐integral , 2014 .

[21]  B. Liu,et al.  The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation , 2014, 1405.7450.

[22]  A. G. Chegini,et al.  Effect of crack propagation on crack tip fields , 2013 .

[23]  D. Camas,et al.  Crack front curvature: Influence and effects on the crack tip fields in bi-dimensional specimens , 2012 .

[24]  A. Kotousov,et al.  A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions , 2009 .

[25]  M. Benguediab,et al.  Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel , 2008 .

[26]  Otmar Kolednik,et al.  J-integral and crack driving force in elastic–plastic materials , 2008 .

[27]  Yoo Sang Choo,et al.  Mode mixity for tubular K-joints with weld toe cracks , 2006 .

[28]  Glaucio H. Paulino,et al.  Interaction integral procedures for 3-D curved cracks including surface tractions , 2005 .

[29]  V. Tvergaard On fatigue crack growth in ductile materials by crack–tip blunting , 2004 .

[30]  G. Kullmer,et al.  A new criterion for the prediction of crack development in multiaxially loaded structures , 2002 .

[31]  Robert H. Dodds,et al.  Probabilistic modeling of weld fracture in steel frame connections. Part II: seismic loading , 2001 .

[32]  Robert H. Dodds,et al.  Modeling the effects of residual stresses on defects in welds of steel frame connections , 2000 .

[33]  Byong-Whi Lee,et al.  Effect of specimen thickness on fatigue crack growth rate , 2000 .

[34]  L. Rose,et al.  The influence of cross‐sectional thickness on fatigue crack growth , 1999 .

[35]  José Costa,et al.  Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel , 1998 .

[36]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[37]  Byong-Whi Lee,et al.  Plastic zone size in fatigue cracking , 1996 .

[38]  Brian Moran,et al.  Energy release rate along a three-dimensional crack front in a thermally stressed body , 1986, International Journal of Fracture.

[39]  T. Sakai,et al.  Effect of Specimen Thickness on Fatigue Crack Propagation in High Strength Steels , 1982 .

[40]  T. Crooker,et al.  THE EFFECTS OF SPECIMEN THICKNESS AND STRESS RELIEF ON FATIGUE CRACK GROWTH RATE IN NICKEL-CHROMIUM-MOLYBDENUM-VANADIUM STEEL , 1977 .

[41]  P. Shahinian Influence of Section Thickness on Fatigue Crack Growth in Type 304 Stainless Steel , 1976 .

[42]  J. Griffiths,et al.  The influence of thickness in fatigue crack propagation rates in a low alloy steel weld metal above and below general yield , 1973 .

[43]  A. R. Jack,et al.  Effects of thickness on fatigue crack initiation and growth in notched mild steel specimens , 1972 .

[44]  W. G. Clark,et al.  Influence of temperature and section size on fatigue crack growth behavior in NiMoV alloy steel , 1970 .

[45]  D. Clausing Crack stability in linear elastic fracture mechanics , 1969 .

[46]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[47]  Paulo J. Tavares,et al.  Fatigue Life Prediction Based on Crack Growth Analysis Using an Equivalent Initial Flaw Size Model: Application to a Notched Geometry , 2015 .

[48]  Hans-Peter Gänser,et al.  Fatigue Crack Growth Under Constant and Variable Amplitude Loading at Semi-elliptical and V-notched Steel Specimens , 2015 .

[49]  K. Tanaka,et al.  4.04 – Fatigue Crack Propagation , 2003 .

[50]  T. J. Lu,et al.  CYCLIC J-INTEGRAL IN RELATION TO FATIGUE CRACK INITIATION AND PROPAGATION , 1991 .

[51]  R. J. Allen,et al.  A REVIEW OF FATIGUE CRACK GROWTH CHARACTERISATION BY LINEAR ELASTIC FRACTURE MECHANICS (LEFM). PART I—PRINCIPLES AND METHODS OF DATA GENERATION , 1988 .

[52]  J. Rigsbee,et al.  Effect of specimen size on fatigue crack growth rate in AISI 4340 steel , 1985 .

[53]  P. Fenici,et al.  Fatigue crack growth in thin section type 316 stainless steel , 1984 .

[54]  Y. Iino Fatigue crack propagation work coefficient—a material constant giving degree of resistance to fatigue crack growth , 1979 .

[55]  J. Knott,et al.  Effects of Thickness on Fibrous Fracture from a Notch and on Fatigue-Crack Propagation in Low-Strength Steel , 1975 .