Recent Progress in Power Refrigeration Below 2 K for Superconducting Accelerators

As a result of technico-economical optimization and quest for increased performance, 2 K cryogenics is now present in large accelerator projects using superconducting magnets or acceleration cavities. Consequently, large cryogenic systems producing refrigeration capacity below 2 K in the kW range and with high efficiency over a large dynamic range are needed. After CEBAF and SNS, this is the case for the Large Hadron Collider (LHC) project at CERN for which eight 2.4 kW@1.8 K refrigeration units are needed to cool each a 3.3 km long sector of high-field magnets. Combining cold hydrodynamic compressors in series with warm volumetric compressors, complete pre-series units as well as sets of series cold compressors have been intensively tested and validated from two different industrial suppliers. After recalling the possible 2 K refrigeration cycles and their comparative merits, this paper describes the specific features of the LHC system and presents the achieved performance with emphasis on the progress in terms of efficiency, operational compliance, reliability and maintenance. Perspectives of application to a future International Linear Collider (ILC) based on cold RF technology are then briefly evoked.