The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development

Plasmodium vivax hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017). In this dataset, we identified and characterized the Liver-Specific Protein 2 (LISP2) protein as an early molecular marker of liver stage development. Immunofluorescence analysis of hepatocytes infected with relapsing malaria parasites, in vitro (P. cynomolgi) and in vivo (P. vivax), reveals that LISP2 expression discriminates between dormant hypnozoites and early developing parasites. We further demonstrate that prophylactic drugs selectively kill all LISP2-positive parasites, while LISP2-negative hypnozoites are only sensitive to anti-relapse drug tafenoquine. Our results provide novel biological insights in the initiation of liver stage schizogony and an early marker suitable for the development of drug discovery assays predictive of anti-relapse activity.

[1]  J. Frampton Tafenoquine: First Global Approval , 2018, Drugs.

[2]  S. Kappe,et al.  A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum , 2018, Nature Communications.

[3]  Vincent L. Butty,et al.  In Vitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. , 2018, Cell host & microbe.

[4]  E. Takashima,et al.  PV1, a novel Plasmodium falciparum merozoite dense granule protein, interacts with exported protein in infected erythrocytes , 2018, Scientific Reports.

[5]  J. Adams,et al.  Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. , 2017, Trends in parasitology.

[6]  G. Bonamy,et al.  A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi , 2017, eLife.

[7]  A. Biton,et al.  Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species , 2017, Cellular microbiology.

[8]  S. Kappe,et al.  The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. , 2016, International journal for parasitology.

[9]  David L. Smith,et al.  Global Epidemiology of Plasmodium vivax , 2016, The American journal of tropical medicine and hygiene.

[10]  Zbynek Bozdech,et al.  DNA damage regulation and its role in drug-related phenotypes in the malaria parasites , 2016, Scientific Reports.

[11]  R. Sauerwein,et al.  PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites , 2016, Antimicrobial Agents and Chemotherapy.

[12]  O. Vandal,et al.  Killing the hypnozoite – drug discovery approaches to prevent relapse in Plasmodium vivax , 2015, Pathogens and global health.

[13]  A. Vaughan,et al.  Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. , 2015, Cell host & microbe.

[14]  M. Davenport,et al.  Modeling the Dynamics of Plasmodium vivax Infection and Hypnozoite Reactivation In Vivo , 2015, PLoS neglected tropical diseases.

[15]  Roger Le Grand,et al.  Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures , 2014, Nature Medicine.

[16]  K. Kuhen,et al.  KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites In Vitro , 2013, Antimicrobial Agents and Chemotherapy.

[17]  Robert W. Sauerwein,et al.  Targeting Plasmodium PI(4)K to eliminate malaria , 2013, Nature.

[18]  N. White,et al.  The activation of vivax malaria hypnozoites by infectious diseases. , 2013, The Lancet. Infectious diseases.

[19]  Anne E Carpenter,et al.  A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. , 2013, Cell host & microbe.

[20]  R. Ménard,et al.  Liver‐specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation , 2013, Molecular microbiology.

[21]  M. Mota,et al.  A toolbox to study liver stage malaria. , 2011, Trends in parasitology.

[22]  A. Thomas,et al.  Towards an In Vitro Model of Plasmodium Hypnozoites Suitable for Drug Discovery , 2011, PloS one.

[23]  Jude M. Przyborski,et al.  Genetic Evidence Strongly Support an Essential Role for PfPV1 in Intra-Erythrocytic Growth of P. falciparum , 2011, PloS one.

[24]  J. Baird,et al.  Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. , 2010, Trends in parasitology.

[25]  L. Rénia,et al.  A pre-emptive strike against malaria's stealthy hepatic forms , 2009, Nature Reviews Drug Discovery.

[26]  S. Kappe,et al.  Quantitative isolation and in vivo imaging of malaria parasite liver stages. , 2006, International journal for parasitology.

[27]  E. Petricoin,et al.  Laser Capture Microdissection , 1996, Science.

[28]  J. Nyalwidhe,et al.  Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum‐infected erythrocytes , 2006, Proteomics.

[29]  S. Kappe,et al.  Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Levy,et al.  Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity , 2003, Nature Medicine.

[31]  A. Baggish,et al.  Antiparasitic Agent Atovaquone , 2002, Antimicrobial Agents and Chemotherapy.

[32]  C. Janse,et al.  Comparative genomics in Plasmodium: a tool for the identification of genes and functional analysis. , 2001, Molecular and biochemical parasitology.

[33]  F. Cogswell The hypnozoite and relapse in primate malaria , 1992, Clinical Microbiology Reviews.

[34]  L. H. Schmidt Compatibility of relapse patterns of Plasmodium cynomolgi infections in rhesus monkeys with continuous cyclical development and hypnozoite concepts of relapse. , 1986, The American journal of tropical medicine and hygiene.

[35]  R. Sinden,et al.  Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. , 1982, The American journal of tropical medicine and hygiene.

[36]  M. E. Azzam,et al.  Mechanism of puromycin action: fate of ribosomes after release of nascent protein chains from polysomes. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Raska [GLOBAL EPIDEMIOLOGY]. , 1964, Ceskoslovenska epidemiologie, mikrobiologie, imunologie.