New soft-bodied panarthropods from diverse Spence Shale (Cambrian; Miaolingian; Wuliuan) depositional environments

The Cambrian (Miaolingian; Wuliuan) Spence Shale Lagerstätte of northern Utah and southern Idaho is one of the most diverse Burgess Shale-type deposits of Laurentia. It yields a diverse fauna consisting of abundant biomineralized and locally abundant soft-bodied fossils, along a range of environments from shallow-water carbonates to deep-shelf dark shales. Panarthropods are the dominant component throughout the deposit, both in time and space, but whereas the trilobites and agnostoids are abundant, most of the soft-bodied taxa are only known from very few specimens. Additionally, the knowledge of soft-bodied panarthropods is currently largely limited to locations in the Wellsville Mountains of northeastern Utah. This contribution describes 21 new soft-bodied panarthropods from six locations, including the first occurrences of soft-bodied panarthropods in the High-Creek, Smithfield Creek, Spence Gulch, and Two-Mile Canyon localities. Additionally, we report the presence of bradoriids— i.e., Branchiocaris pretiosa Resser, 1929, Perspicaris? dilatus Robison and Richards, 1981, Naraoia? sp. indet., Thelxiope cf. T. palaeothalassia Simonetta and Delle Cave, 1975, and Tuzoia guntheri Robison and Richards, 1981—for the first time from the Spence Shale Lagerstätte; the first reported occurrence outside of the Burgess Shale for Thelxiope cf. T. palaeothalassia; and the first Wuliuan occurrence of Tuzoia guntheri. We also report on a new hurdiid carapace element and additional specimens of Buccaspinea cooperi? Pates et al., 2021, Dioxycaris argenta Walcott, 1886, Hurdia sp. indet., and Tuzoia retifera Walcott, 1912. This new material improves our understanding of the panarthropod fauna of the Spence Shale Lagerstätte and substantially increases our understanding of the distribution of the described taxa in time and space.

[1]  J. Schiffbauer,et al.  Annelids from the Cambrian (Wuliuan Stage, Miaolingian) Spence Shale Lagerstätte of northern Utah, USA , 2023, Historical biology.

[2]  Jean‐Bernard Caron,et al.  The problematic Cambrian arthropod Tuzoia and the origin of mandibulates revisited , 2022, Royal Society Open Science.

[3]  Xingliang Zhang,et al.  Addressing the Chengjiang Conundrum: A palaeoecological view on the rarity of hurdiid radiodonts in the most diverse early Cambrian Lagerstätte , 2022, Geoscience Frontiers.

[4]  J. Schiffbauer,et al.  Preservation and diagenesis of soft-bodied fossils and the occurrence of phosphate-associated rare earth elements in the Cambrian (Wuliuan) Spence Shale Lagerstätte , 2022, Palaeogeography, Palaeoclimatology, Palaeoecology.

[5]  Jean‐Bernard Caron,et al.  A giant nektobenthic radiodont from the Burgess Shale and the significance of hurdiid carapace diversity , 2021, Royal Society Open Science.

[6]  J. Ortega‐Hernández,et al.  Furongian (Jiangshanian) occurrences of radiodonts in Poland and South China and the fossil record of the Hurdiidae , 2021, PeerJ.

[7]  S. Kimmig,et al.  A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments , 2021, Nature Ecology & Evolution.

[8]  Ao Sun,et al.  Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta) , 2021, PalZ.

[9]  Ao Sun,et al.  New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implications , 2021 .

[10]  J. Ortega‐Hernández,et al.  The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian) , 2021, PeerJ.

[11]  A. Whitaker,et al.  Anthropologically introduced biases in natural history collections, with a case study on the invertebrate paleontology collections from the middle Cambrian Spence Shale Lagerstätte , 2020 .

[12]  Zhixin Sun,et al.  A new middle Cambrian radiodont from North China: Implications for morphological disparity and spatial distribution of hurdiids , 2020 .

[13]  P. Selden,et al.  A new shell-bearing organism from the Cambrian Spence Shale of Utah , 2020 .

[14]  J. Ortega‐Hernández,et al.  New exceptionally preserved panarthropods from the Drumian Wheeler Konservat‐Lagerstätte of the House Range of Utah , 2020, Papers in Palaeontology.

[15]  J. Ortega‐Hernández,et al.  Revision of the mollisoniid chelicerate(?) Thelxiope, with a new species from the middle Cambrian Wheeler Formation of Utah , 2020, PeerJ.

[16]  J. Schiffbauer,et al.  Re-description of the Spence Shale palaeoscolecids in light of new morphological features with comments on palaeoscolecid taxonomy and taphonomy , 2020, PalZ.

[17]  Jean‐Bernard Caron,et al.  The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia , 2020, Paleobiology.

[18]  J. Antcliffe,et al.  Taphonomic bias in exceptionally preserved biotas , 2020, Earth and Planetary Science Letters.

[19]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[20]  G. Edgecombe,et al.  Systematics, preservation and biogeography of radiodonts from the southern Great Basin, USA, during the upper Dyeran (Cambrian Series 2, Stage 4) , 2019, Papers in Palaeontology.

[21]  Jean‐Bernard Caron,et al.  A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources , 2019, Proceedings of the Royal Society B.

[22]  Jin Peng,et al.  The bivalved arthropod Tuzoia from the Balang Formation (Cambrian Stage 4) of Guizhou, China, and new observations on comparative species , 2019, Papers in Palaeontology.

[23]  N. Butterfield,et al.  First report of paired ventral endites in a hurdiid radiodont , 2019, Zoological Letters.

[24]  R. Robison,et al.  New edrioasteroid (Echinodermata) from the Spence Shale (Cambrian), Idaho, USA: further evidence of attachment in the early evolutionary history of edrioasteroids , 2019, Bulletin of Geosciences.

[25]  B. Lieberman,et al.  The Spence Shale Lagerstätte: an important window into Cambrian biodiversity , 2019, Journal of the Geological Society.

[26]  S. Pates,et al.  New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton , 2018, Nature Communications.

[27]  Jean‐Bernard Caron,et al.  Three new naraoiid species from the Burgess Shale, with a morphometric and phylogenetic reinvestigation of Naraoiidae , 2018, Palaeontology.

[28]  P. Van Roy,et al.  The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life , 2018, Journal of the Geological Society.

[29]  G. Edgecombe,et al.  New radiodonts with gnathobase‐like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta , 2018, Papers in Palaeontology.

[30]  J. Paterson,et al.  Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan , 2018, National Science Review.

[31]  B. Lieberman,et al.  Herpetogaster from the early Cambrian of Nevada (Series 2, Stage 4) and its implications for the evolution of deuterostomes , 2018, Geological Magazine.

[32]  B. Pratt,et al.  COPROLITES IN THE RAVENS THROAT RIVER LAGERSTÄTTE OF NORTHWESTERN CANADA: IMPLICATIONS FOR THE MIDDLE CAMBRIAN FOOD WEB , 2018, Palaios.

[33]  Maoyan Zhu,et al.  Morphology of diverse radiodontan head sclerites from the early Cambrian Chengjiang Lagerstätte, south-west China , 2018 .

[34]  J. Kimmig,et al.  Coprolites in mid-Cambrian (Series 2-3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications , 2017 .

[35]  B. Lieberman,et al.  The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3, Stage 5) Spence Shale of Utah: its biological affinities and taphonomy , 2017, Journal of Paleontology.

[36]  B. Lieberman,et al.  Hurdiid radiodontans from the middle Cambrian (Series 3) of Utah , 2017, Journal of Paleontology.

[37]  B. Lieberman,et al.  Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA , 2017, PeerJ.

[38]  Jean‐Bernard Caron,et al.  Burgess Shale fossils illustrate the origin of the mandibulate body plan , 2017, Nature.

[39]  S. Pates,et al.  A restudy of Utahcaris orion (Euarthropoda) from the Spence Shale (Middle Cambrian, Utah, USA) , 2016, Geological Magazine.

[40]  G. Edgecombe,et al.  Morphology of the Radiodontan Lyrarapax from the Early Cambrian Chengjiang Biota , 2016, Journal of Paleontology.

[41]  B. Pratt,et al.  Taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstätte, Rockslide Formation, Mackenzie Mountains, Northwest Territories, Canada , 2016 .

[42]  G. Edgecombe,et al.  The Emu Bay Shale Konservat-Lagerstätte: a view of Cambrian life from East Gondwana , 2015, Journal of the Geological Society.

[43]  J. Eisenback Morphology and Systematics , 2015 .

[44]  S. Morris,et al.  New records of Burgess Shale-type taxa from the middle Cambrian of Utah , 2015, Journal of Paleontology.

[45]  P. Roy,et al.  Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps , 2015, Nature.

[46]  B. Pratt,et al.  Soft-bodied biota from the middle Cambrian (Drumian) Rockslide Formation, Mackenzie Mountains, northwestern Canada , 2015, Journal of Paleontology.

[47]  N. Strausfeld,et al.  Brain structure resolves the segmental affinity of anomalocaridid appendages , 2014, Nature.

[48]  T. Hegna,et al.  Arthropod appendages from the Weeks Formation Konservat-Lagerstatte: new occurences of anomalocaridids in the Cambrian of Utah, USA , 2014 .

[49]  G. Edgecombe,et al.  The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis , 2014 .

[50]  G. Edgecombe,et al.  Morphology of Anomalocaris canadensis from the Burgess Shale , 2014, Journal of Paleontology.

[51]  A. Daley,et al.  Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah , 2013 .

[52]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[53]  J. Vinther,et al.  Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): Opening a new window into early Phanerozoic benthic ecology , 2012 .

[54]  P. Raymond The Appendages, Anatomy, and Relationships of Trilobites , 2012 .

[55]  A. Daley,et al.  The oral cone of Anomalocaris is not a classic ‘‘peytoia’’ , 2012, Naturwissenschaften.

[56]  J. Peng,et al.  Discovery and significance of Naraoia from the Qiandongian (lower Cambrian) Balang Formation, Eastern Guizhou, South China , 2012 .

[57]  Jean‐Bernard Caron,et al.  A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada , 2012, PloS one.

[58]  C. Walcott Second contribution to the studies on the Cambrian faunas of North America , 2011 .

[59]  A. Daley,et al.  New anomalocaridid appendages from the Burgess Shale, Canada , 2010 .

[60]  J. Vinther,et al.  Ordovician faunas of Burgess Shale type , 2010, Nature.

[61]  D. Briggs,et al.  A Great-Appendage Arthropod with a Radial Mouth from the Lower Devonian Hunsrück Slate, Germany , 2009, Science.

[62]  B. Lieberman,et al.  Middle Cambrian Arthropods from Utah , 2008 .

[63]  R. Bromley,et al.  Diminutive trace fossils in the Chengjiang Lagerstätte , 2007 .

[64]  A. Minelli Animal Evolution: Interrelationships of the Living Phyla , 2007 .

[65]  Yuan-long Zhao,et al.  TUZOIA: MORPHOLOGY AND LIFESTYLE OF A LARGE BIVALVED ARTHROPOD OF THE CAMBRIAN SEAS , 2007, Journal of Paleontology.

[66]  Jean‐Bernard Caron,et al.  A NEW LATE SILURIAN (PRIDOLIAN) NARAOIID (EUARTHROPODA: NEKTASPIDA) FROM THE BERTIE FORMATION OF SOUTHERN ONTARIO, CANADA—DELAYED FALLOUT FROM THE CAMBRIAN EXPLOSION , 2004, Journal of Paleontology.

[67]  D. Siveter,et al.  The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life , 2004 .

[68]  B. Lieberman A NEW SOFT-BODIED FAUNA: THE PIOCHE FORMATION OF NEVADA , 2003, Journal of Paleontology.

[69]  X. Hou,et al.  Arthropods of the Lower Cambrian Chengjiang fauna, southwest China , 1997, Fossils and Strata.

[70]  D. Collins The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.) , 1996, Journal of Paleontology.

[71]  R. Robison,et al.  Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah , 1984 .

[72]  R. Robison,et al.  Larger bivalve arthropods from the Middle Cambrian of Utah , 1981 .

[73]  D. Briggs The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia , 1978 .

[74]  G. Maxey LOWER AND MIDDLE CAMBRIAN STRATIGRAPHY IN NORTHERN UTAH AND SOUTHEASTERN IDAHO , 1958 .

[75]  L. R. Cox Index Fossils of North America , 1944, Nature.

[76]  J. Schiffbauer,et al.  First palaeoscolecid from the Cambrian (Miaolingian, Drumian) Marjum Formation of western Utah , 2021, Acta Palaeontologica Polonica.

[77]  J. Schiffbauer,et al.  First palaeoscolecid from the Cambrian (Drumian, Miaolingian) Marjum Formation of western Utah, USA , 2021 .

[78]  J. Kimmig Burgess Shale Fauna , 2019 .

[79]  J. Ortega‐Hernández,et al.  Reply to Comment on “ Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris ” with the formal description of Stanleycaris , 2018 .

[80]  Sandra Maurer The Cambrian Fossils Of Chengjiang China The Flowering Of Early Animal Life , 2016 .

[81]  Cedric E. Ginestet ggplot2: Elegant Graphics for Data Analysis , 2011 .

[82]  A. Harvard,et al.  Bulletin of the Museum of Comparative Zoology , 2011 .

[83]  G. Storrs MORE SOFT-BODIED ANIMALS AND ALGAE FROM THE MIDDLE CAMBRIAN OF UTAH AND BRITISH COLUMBIA ' , 2008 .

[84]  L. Hui NEW BIVALVED ARTHROPODS FROM THE EARLY CAMBRIAN GUANSHAN FAUNA IN THE KUNMING AND WUDING AREA , 2006 .

[85]  The Structure and Classification of the Arthropoda , 2006 .

[86]  M. El-Hedeny Taphonomy and Paleoecology of the Middle Miocene oysters from Wadi Sudr, Gulf of Suez, Egypt , 2005 .

[87]  Neal W. Driscoll,et al.  Sequence Stratigraphy , 2005 .

[88]  D. Briggs Arthropods from the Lower Cambrian Chengjiang fauna, southwest China , 1998 .

[89]  C. Brett,et al.  Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho , 1997 .

[90]  W. T. Zhang Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia , 1985 .

[91]  M. Glaessner Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia , 1979 .

[92]  D. Briggs The Arthropod Branchiocaris N. Gen., Middle Cambrian, Burgess Shale, British Columbia , 1976 .

[93]  K. An ON THE DISCOVERY OF HOMOPODA FROM SOUTH CHINA , 1957 .

[94]  K. Caster,et al.  PSEUDOARCTOLEPIS SHARPI, N. GEN., N. SP. (PHYLLOCARIDA), FROM THE WHEELER SHALE (MIDDLE CAMBRIAN) OF UTAH , 1956 .

[95]  C. E. Resser,et al.  The Sinian and Cambrian formations and fossils of southern Manchoukuo , 1937 .

[96]  R. S. Bassler,et al.  Cambrian bivalved Crustacea of the order Conchostraca , 1931 .

[97]  C. Walcott,et al.  Addenda to descriptions of Burgess shale fossils (with 23 plates) , 1931 .

[98]  C. E. Resser New Lower and Middle Cambrian Crustacea , 1929 .

[99]  C. Walcott Cambrian Geology and Paleontology II: No. 3--Middle Cambrian Holothurians and Medusae , 1911 .

[100]  OF MORPHOLOGY , 2022 .