Hyper-entanglement of photons emitted by a quantum dot

Entanglement, a fundamental resource of quantum technologies, is a unique quantum mechanical attribute. In various systems it can be achieved in various individual degrees of freedom, however some of those systems are able to create entanglement in multiple degrees of freedom simultaneously: hyper-entanglement [1]. Here, we report on demonstration of polarization [2] and time-bin [3] hyper-entangled photons emitted from a single quantum dot. By applying two-photon resonant and coherent excitation on a quantum dot system with marginal fine structure splitting we yield fidelities to the maximally entangled state of 0.80(3) and 0.87(4) in polarization and time-bin, respectively. Quantum enhanced communication schemes rely on Bell-state measurements, which find their simplest realization in the interference of two photons at a beam splitter. However, this method is efficiency limited [4] and a complete Bell state analysis of a photon pair entangled in one degree of freedom using only linear optics is impossible. This limitation can be overcome if the photon pair is entangled in more than one degree of freedom, a hyper-entangled state. Using such states in such schemes does not only reduce the resource overhead [5] it also offers the possibility to increase the success rate significantly [6].

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[3]  G. Weihs,et al.  Polarization entangled photons from quantum dots embedded in nanowires. , 2014, Nano letters.

[4]  D. Ritchie,et al.  Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.

[5]  Trent M. Graham,et al.  Superdense teleportation using hyperentangled photons , 2013, Nature Communications.

[6]  C. Simon,et al.  Creating single time-bin-entangled photon pairs. , 2004, Physical review letters.

[7]  Hiroki Takesue,et al.  Implementation of quantum state tomography for time-bin entangled photon pairs. , 2009, Optics express.

[8]  Yongbao Sun,et al.  Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory , 2015, Nature Communications.

[9]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[10]  A. Kuhn,et al.  Photonic qubits, qutrits and ququads accurately prepared and delivered on demand , 2012, 1203.5614.

[11]  Emanuele Pelucchi,et al.  Towards quantum-dot arrays of entangled photon emitters , 2013, 1402.1709.

[12]  P. Pathak,et al.  Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage , 2011 .

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  M. Shtaif,et al.  Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path. , 2010, Optics letters.

[15]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.

[16]  Ronald J Sadlier,et al.  Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements. , 2016, Physical review letters.

[17]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[18]  Christian Schneider,et al.  Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. , 2015, Optics express.

[19]  B. Gerardot,et al.  Accessing the dark exciton with light , 2010 .

[20]  G. Weihs,et al.  Coherence and degree of time-bin entanglement from quantum dots , 2015, 1506.02429.

[21]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[22]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[23]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[24]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[25]  P. Michler,et al.  On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.

[26]  C. Schwemmer,et al.  Systematic errors in current quantum state tomography tools. , 2013, Physical review letters.

[27]  M. Dušek,et al.  Experimental investigation of a four-qubit linear-optical quantum logic circuit , 2016, Scientific Reports.

[28]  O. Schmidt,et al.  Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.

[29]  G. Weihs,et al.  Efficiency vs. multi-photon contribution test for quantum dots. , 2012, Optics express.

[30]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[31]  L. Vaidman,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[32]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[33]  G. Weihs,et al.  Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.

[34]  Jian-Wei Pan,et al.  On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.

[35]  S. F. Covre da Silva,et al.  Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.

[36]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[37]  Y. Don,et al.  Deterministic generation of a cluster state of entangled photons , 2016, Science.

[38]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[39]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[40]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[41]  Ebrahim Karimi,et al.  Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation , 2014, 1404.7573.

[42]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[43]  Paul G. Kwiat,et al.  Hyperentangled Bell-state analysis , 2007 .

[44]  Gregor Weihs,et al.  Time-bin entangled photons from a quantum dot , 2008, Nature Communications.

[45]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .