Hyper-entanglement of photons emitted by a quantum dot
暂无分享,去创建一个
Gregor Weihs | Peter Michler | Markus Müller | G. Weihs | T. Huber | P. Michler | A. Predojevič | M. Prilmüller | Maximilian Prilmüller | Tobias Huber | Ana Predojevič | M. Müller
[1] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[2] Christian Kurtsiefer,et al. Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.
[3] G. Weihs,et al. Polarization entangled photons from quantum dots embedded in nanowires. , 2014, Nano letters.
[4] D. Ritchie,et al. Improved fidelity of triggered entangled photons from single quantum dots , 2006, quant-ph/0601187.
[5] Trent M. Graham,et al. Superdense teleportation using hyperentangled photons , 2013, Nature Communications.
[6] C. Simon,et al. Creating single time-bin-entangled photon pairs. , 2004, Physical review letters.
[7] Hiroki Takesue,et al. Implementation of quantum state tomography for time-bin entangled photon pairs. , 2009, Optics express.
[8] Yongbao Sun,et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory , 2015, Nature Communications.
[9] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[10] A. Kuhn,et al. Photonic qubits, qutrits and ququads accurately prepared and delivered on demand , 2012, 1203.5614.
[11] Emanuele Pelucchi,et al. Towards quantum-dot arrays of entangled photon emitters , 2013, 1402.1709.
[12] P. Pathak,et al. Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage , 2011 .
[13] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[14] M. Shtaif,et al. Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path. , 2010, Optics letters.
[15] B. Gerardot,et al. Entangled photon pairs from semiconductor quantum dots. , 2005, Physical Review Letters.
[16] Ronald J Sadlier,et al. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements. , 2016, Physical review letters.
[17] Paul G. Kwiat,et al. Hyper-entangled states , 1997 .
[18] Christian Schneider,et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. , 2015, Optics express.
[19] B. Gerardot,et al. Accessing the dark exciton with light , 2010 .
[20] G. Weihs,et al. Coherence and degree of time-bin entanglement from quantum dots , 2015, 1506.02429.
[21] I. Sagnes,et al. Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.
[22] Weinfurter,et al. Dense coding in experimental quantum communication. , 1996, Physical review letters.
[23] Wolfgang Dür,et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .
[24] P. Petroff,et al. A quantum dot single-photon turnstile device. , 2000, Science.
[25] P. Michler,et al. On-demand generation of indistinguishable polarization-entangled photon pairs , 2013, 1308.4257.
[26] C. Schwemmer,et al. Systematic errors in current quantum state tomography tools. , 2013, Physical review letters.
[27] M. Dušek,et al. Experimental investigation of a four-qubit linear-optical quantum logic circuit , 2016, Scientific Reports.
[28] O. Schmidt,et al. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. , 2014, Nano letters.
[29] G. Weihs,et al. Efficiency vs. multi-photon contribution test for quantum dots. , 2012, Optics express.
[30] Franson,et al. Bell inequality for position and time. , 1989, Physical review letters.
[31] L. Vaidman,et al. Methods for Reliable Teleportation , 1998, quant-ph/9808040.
[32] N. Lutkenhaus,et al. Bell measurements for teleportation , 1998, quant-ph/9809063.
[33] G. Weihs,et al. Deterministic photon pairs and coherent optical control of a single quantum dot. , 2012, Physical review letters.
[34] Jian-Wei Pan,et al. On-demand semiconductor single-photon source with near-unity indistinguishability. , 2012, Nature nanotechnology.
[35] S. F. Covre da Silva,et al. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. , 2018, Physical review letters.
[36] Ekert,et al. "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.
[37] Y. Don,et al. Deterministic generation of a cluster state of entangled photons , 2016, Science.
[38] Andrew G. White,et al. Measurement of qubits , 2001, quant-ph/0103121.
[39] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[40] H. J. Kimble,et al. The quantum internet , 2008, Nature.
[41] Ebrahim Karimi,et al. Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation , 2014, 1404.7573.
[42] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[43] Paul G. Kwiat,et al. Hyperentangled Bell-state analysis , 2007 .
[44] Gregor Weihs,et al. Time-bin entangled photons from a quantum dot , 2008, Nature Communications.
[45] N. Gisin,et al. Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .