Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H(+)vs. Ac-Lys-Ala19 + H(+) and the current reach of DFT.

Reliable, quantitative predictions of the structure of peptides based on their amino-acid sequence information are an ongoing challenge. We here explore the energy landscapes of two unsolvated 20-residue peptides that result from a shift of the position of one amino acid in otherwise the same sequence. Our main goal is to assess the performance of current state-of-the-art density-functional theory for predicting the structure of such large and complex systems, where weak interactions such as dispersion or hydrogen bonds play a crucial role. For validation of the theoretical results, we employ experimental gas-phase ion mobility-mass spectrometry and IR spectroscopy. While unsolvated Ac-Ala19-Lys + H(+) will be shown to be a clear helix seeker, the structure space of Ac-Lys-Ala19 + H(+) is more complicated. Our first-principles structure-screening strategy using the dispersion-corrected PBE functional (PBE + vdW(TS)) identifies six distinctly different structure types competing in the low-energy regime (≈16 kJ mol(-1)). For these structure types, we analyze the influence of the PBE and the hybrid PBE0 functional coupled with either a pairwise dispersion correction (PBE + vdW(TS), PBE0 + vdW(TS)) or a many-body dispersion correction (PBE + MBD*, PBE0 + MBD*). We also take harmonic vibrational and rotational free energy into account. Including this, the PBE0 + MBD* functional predicts only one unique conformer to be present at 300 K. We show that this scenario is consistent with both experiments.

[1]  M. Scheffler,et al.  Validation challenge of density-functional theory for peptides-example of Ac-Phe-Ala5-LysH(+). , 2014, The journal of physical chemistry. A.

[2]  T. Rizzo,et al.  Spectroscopic studies of cold, gas-phase biomolecular ions , 2009 .

[3]  Jonathan W Essex,et al.  Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies. , 2013, The journal of physical chemistry. B.

[4]  K. Dill,et al.  The Protein-Folding Problem, 50 Years On , 2012, Science.

[5]  E. W. McDaniel,et al.  Transport Properties of Ions in Gases , 1988 .

[6]  J. Martens,et al.  Globule to Helix Transition in Sodiated Polyalanines , 2012 .

[7]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[8]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[9]  T. Vaden,et al.  Vibrational Spectra of Small Protonated Peptides from Finite Temperature MD Simulations and IRMPD Spectroscopy. , 2009, Journal of chemical theory and computation.

[10]  A.F.G. van der Meer,et al.  The Free-Electron-Laser user facility FELIX , 1995 .

[11]  Diwakar Shukla,et al.  To milliseconds and beyond: challenges in the simulation of protein folding. , 2013, Current opinion in structural biology.

[12]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[13]  P. Giannozzi,et al.  Towards Very Large-Scale Electronic-Structure Calculations , 1992 .

[14]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[15]  M. Jarrold,et al.  Helices and Sheets in vacuo. , 2007, Physical chemistry chemical physics : PCCP.

[16]  Klaus Schulten,et al.  Challenges in protein-folding simulations , 2010 .

[17]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[18]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Matthias Scheffler,et al.  On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: benchmarks approaching the complete basis set limit. , 2007, The Journal of chemical physics.

[20]  M. Scheffler,et al.  Impact of vibrational entropy on the stability of unsolvated peptide helices with increasing length. , 2012, The journal of physical chemistry. B.

[21]  A. Tkatchenko,et al.  Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. , 2011, Journal of chemical theory and computation.

[22]  Mark A. Ratner,et al.  Design of Helices That Are Stable in Vacuo , 1998 .

[23]  T. Rizzo,et al.  Spectroscopic signatures of gas-phase helices: Ac-Phe-(Ala)5-Lys-H+ and Ac-Phe-(Ala)10-Lys-H+. , 2007, Journal of the American Chemical Society.

[24]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[25]  Martin F. Jarrold,et al.  Helix Formation in Unsolvated Alanine-Based Peptides: Helical Monomers and Helical Dimers , 1999 .

[26]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[27]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[28]  Richard J. Plowright,et al.  Compact folding of isolated four-residue neutral peptide chains: H-bonding patterns and entropy effects. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  A. Barth,et al.  What vibrations tell about proteins , 2002, Quarterly Reviews of Biophysics.

[30]  M. Scheffler,et al.  How cations change peptide structure. , 2013, Chemistry.

[31]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[32]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[33]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[34]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[35]  John B. Pendry,et al.  Reliability factors for LEED calculations , 1980 .

[36]  Richard A. Friesner,et al.  Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields , 1997 .

[37]  A. Tkatchenko,et al.  Hydrogen bonds and van der waals forces in ice at ambient and high pressures. , 2011, Physical review letters.

[38]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[39]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[40]  R. L. Baldwin,et al.  The mechanism of alpha-helix formation by peptides. , 1992, Annual review of biophysics and biomolecular structure.

[41]  C. Baldauf,et al.  Ab initio MO Theory – An Important Tool in Foldamer Research: Prediction of Helices in Oligomers of omega-Amino Acids , 2012 .

[42]  R. Nussinov,et al.  A systematic study of the vibrational free energies of polypeptides in folded and random states. , 2000, Biophysical journal.

[43]  Sándor Suhai,et al.  Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase. , 2008, The journal of physical chemistry. A.

[44]  Alexandre Tkatchenko,et al.  Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. , 2011, Physical review letters.

[45]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[46]  J. Dannenberg,et al.  Density functional theory study of β-hairpins in antiparallel β-sheets, a new classification based upon H-bond topology. , 2012, Biochemistry.

[47]  Q. Hu,et al.  Effect of the surface on the secondary structure of soft landed peptide ions. , 2010, Physical chemistry chemical physics : PCCP.

[48]  H. Schaefer,et al.  Conformational preferences of gas-phase helices: experiment and theory struggle to agree: the seven-residue peptide Ac-Phe-(Ala)5-Lys-H+. , 2012, Chemistry.

[49]  X. Daura,et al.  Peptide Folding: When Simulation Meets Experiment , 1999 .

[50]  Chris-Kriton Skylaris,et al.  Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. , 2011, The Journal of chemical physics.

[51]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[52]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[53]  Martin F. Jarrold,et al.  Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential , 1996 .

[54]  David H Russell,et al.  Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. , 2011, Journal of the American Chemical Society.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  M. Jarrold,et al.  Metal-Ion Enhanced Helicity in the Gas Phase , 2000 .

[57]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[58]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[59]  M. Gaigeot Theoretical spectroscopy of floppy peptides at room temperature. A DFTMD perspective: gas and aqueous phase. , 2010, Physical chemistry chemical physics : PCCP.

[60]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[61]  J. Oomens,et al.  Gas-phase infrared multiple photon dissociation spectroscopy of mass-selected molecular ions , 2006 .

[62]  J. Oomens,et al.  Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions , 2005 .

[63]  Michael T. Bowers,et al.  Gas-Phase Conformation of Biological Molecules: Bradykinin , 1996 .

[64]  Alexandre Tkatchenko,et al.  Collective many-body van der Waals interactions in molecular systems , 2012, Proceedings of the National Academy of Sciences.

[65]  Pavel Hobza,et al.  Benchmark database on isolated small peptides containing an aromatic side chain: comparison between wave function and density functional theory methods and empirical force field. , 2008, Physical chemistry chemical physics : PCCP.

[66]  V. Spiwok,et al.  Potential-energy and free-energy surfaces of glycyl-phenylalanyl-alanine (GFA) tripeptide: experiment and theory. , 2008, Chemistry.

[67]  T. Rizzo,et al.  Spectroscopy and conformational preferences of gas-phase helices. , 2009, Physical chemistry chemical physics : PCCP.

[68]  M. Scheffler,et al.  Native like helices in a specially designed β peptide in the gas phase. , 2015, Physical chemistry chemical physics : PCCP.

[69]  V. Blum,et al.  Water adsorption at two unsolvated peptides with a protonated lysine residue: from self-solvation to solvation. , 2012, The journal of physical chemistry. B.

[70]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[71]  Density functional theory study of the conformational space of an infinitely long polypeptide chain. , 2009, The Journal of chemical physics.

[72]  M. Gaigeot,et al.  Infrared spectroscopy in the gas and liquid phase from first principle molecular dynamics simulations: application to small peptides , 2007 .

[73]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[74]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[75]  A. Tkatchenko,et al.  Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem. , 2012, The Journal of chemical physics.

[76]  M. Rossi,et al.  Secondary Structure of Ac-Alan-LysH+ Polyalanine Peptides (n = 5,10,15) in Vacuo: Helical or Not? , 2010, 1005.1228.