Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth

The neighborhood definition, which determines the influence on a cell from its nearby cells within a localized region, plays a critical role in the performance of a cellular automaton (CA) model. Raster CA models use a cellular grid to represent geographic space, and are sensitive to the cell size and neighborhood configuration. However, the sensitivity of vector-based CAs, an alternative to the raster-based counterpart, to neighborhood type and size remains uninvestigated. The present article reports the results of a detailed sensitivity analysis of an irregular CA model of urban land use dynamics. The model uses parcel data at the cadastral scale to represent geographic space, and was implemented to simulate urban growth in Central Texas, USA. Thirty neighborhood configurations defined by types and sizes were considered in order to examine the variability in the model outcome. Results from accuracy assessments and landscape metrics confirmed the model’s sensitivity to neighborhood configurations. Furthermore, the centroid intercepted neighborhood with a buffer of 120 m produced the most accurate simulation result. This neighborhood produced scattered development while the centroid extent-wide neighborhood resulted in a clustered development predominantly near the city center.

[1]  Karel De Loof,et al.  Influence of the topology of a cellular automaton on its dynamical properties , 2013, Commun. Nonlinear Sci. Numer. Simul..

[2]  K. Seto,et al.  Quantifying Spatiotemporal Patterns of Urban Land-use Change in Four Cities of China with Time Series Landscape Metrics , 2005, Landscape Ecology.

[3]  B. De Baets,et al.  Topology-induced phase transitions in totalistic cellular automata , 2013 .

[4]  B. De Baets,et al.  On the topological sensitivity of cellular automata. , 2011, Chaos.

[5]  Danielle J. Marceau,et al.  Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata , 2005 .

[6]  Xia Li,et al.  Defining agents' behaviors to simulate complex residential development using multicriteria evaluation. , 2007, Journal of environmental management.

[7]  Andrew T. Crooks,et al.  Constructing and implementing an agent-based model of residential segregation through vector GIS , 2010, Int. J. Geogr. Inf. Sci..

[8]  Michael Batty,et al.  Cellular Automata and Urban Form: A Primer , 1997 .

[9]  M. Herold,et al.  The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses , 2002 .

[10]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[11]  G. D. Jenerette,et al.  Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States , 2011 .

[12]  Danielle J. Marceau,et al.  VecGCA: A Vector-Based Geographic Cellular Automata Model Allowing Geometric Transformations of Objects , 2008 .

[13]  Fang Wang,et al.  Identifying dominant factors for the calibration of a land-use cellular automata model using Rough Set Theory , 2011, Comput. Environ. Urban Syst..

[14]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[15]  Executive Summary World Urbanization Prospects: The 2018 Revision , 2019 .

[16]  Xiaoping Liu,et al.  An extended cellular automaton using case‐based reasoning for simulating urban development in a large complex region , 2006 .

[17]  Jae Hong Kim,et al.  Spatiotemporal scale dependency and other sensitivities in dynamic land-use change simulations , 2013, Int. J. Geogr. Inf. Sci..

[18]  Keith C. Clarke,et al.  Spatio‐temporal dynamics in California's Central Valley: Empirical links to urban theory , 2005, Int. J. Geogr. Inf. Sci..

[19]  Suzana Dragicevic,et al.  A GIS-Based Irregular Cellular Automata Model of Land-Use Change , 2007 .

[20]  T. Edwin Chow,et al.  An agent-integrated irregular automata model of urban land-use dynamics , 2014, Int. J. Geogr. Inf. Sci..

[21]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[22]  Paul M. Torrens,et al.  Cellular Models of Urban Systems , 2000, ACRI.

[23]  Suzana Dragićević,et al.  High Resolution Urban Land-use Change Modeling: Agent iCity Approach , 2011, Applied Spatial Analysis and Policy.

[24]  I. Benenson,et al.  Entity-Based Modeling of Urban Residential Dynamics: The Case of Yaffo, Tel Aviv , 2002 .

[25]  Andrés Manuel García,et al.  An analysis of the effect of the stochastic component of urban cellular automata models , 2011, Comput. Environ. Urban Syst..

[26]  C. Lavalle,et al.  Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata , 2003 .

[27]  Florencio Ballestores,et al.  An integrated parcel-based land use change model using cellular automata and decision tree , 2012 .

[28]  Anthony Gar-On Yeh,et al.  Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning , 2003 .

[29]  Linda See,et al.  Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia , 2009 .

[30]  Jianguo Wu,et al.  Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA , 2011 .

[31]  B. De Baets,et al.  Effect of asynchronous updating on the stability of cellular automata , 2012 .

[32]  T. Edwin Chow,et al.  A GIS toolset for automated partitioning of urban lands , 2014, Environ. Model. Softw..

[33]  Reiner Doluschitz,et al.  The impact of variation in scale on the behavior of a cellular automata used for land use change modeling , 2010, Comput. Environ. Urban Syst..

[34]  E. Burgess “The Growth of the City: An Introduction to a Research Project” , 2020, The City Reader.

[35]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[36]  F. Aguilera,et al.  Landscape metrics in the analysis of urban land use patterns: A case study in a Spanish metropolitan area , 2011 .

[37]  Scott J. Goetz,et al.  Analysis of scale dependencies in an urban land‐use‐change model , 2005, Int. J. Geogr. Inf. Sci..

[38]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[39]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[40]  S. An,et al.  The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China , 2007, Landscape Ecology.

[41]  David O'Sullivan,et al.  Exploring Spatial Process Dynamics Using Irregular Cellular Automaton Models , 2010 .

[42]  Fang Wang,et al.  Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model , 2009, Comput. Environ. Urban Syst..

[43]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[44]  Bernard De Baets,et al.  Cellular automata on irregular tessellations , 2012 .

[45]  Jianguo Wu,et al.  Modeling urban landscape dynamics: A case study in Phoenix, USA , 2004, Urban Ecosystems.

[46]  Wenzhong Shi,et al.  Development of Voronoi-based cellular automata -an integrated dynamic model for Geographical Information Systems , 2000, Int. J. Geogr. Inf. Sci..

[47]  Narimah Samat,et al.  Characterizing the scale sensitivity of the cellular automata simulated urban growth: A case study of the Seberang Perai Region, Penang State, Malaysia , 2006, Comput. Environ. Urban Syst..

[48]  Roger White,et al.  The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics , 1997 .

[49]  Niandry Moreno,et al.  A vector-based geographical cellular automata model to mitigate scale sensitivity and to allow objects' geometric transformation , 2008 .

[50]  Barry Turner,et al.  United Nations (UN) , 2009 .

[51]  Jianguo Wu,et al.  Quantifying the speed, growth modes, and landscape pattern changes of urbanization: a hierarchical patch dynamics approach , 2013, Landscape Ecology.