Giant Magnetic Anisotropy Induced by Ligand LS Coupling in Layered Cr Compounds.

We propose a novel origin of magnetic anisotropy to explain the unusual magnetic behaviors of layered ferromagnetic Cr compounds (3d^{3}) wherein the anisotropy field varies from ≲0.01 to ∼3  T on changing the ligand atom in a common hexagonal structure. The effect of the ligand p orbital spin-orbit (LS) coupling on the magnetic anisotropy is explored by using four-site full multiplet cluster model calculations for energies involving the superexchange interaction at different spin axes. Our calculation shows that the anisotropy energy, which is the energy difference for different spin axes, is strongly affected not only by the LS coupling strength but also by the degree of p-d covalency in the layered geometry. This anisotropy energy involving the superexchange appears to dominate the magnetic anisotropy and even explains the giant magnetic anisotropy as large as 3 T observed in CrI_{3}.

[1]  G. Ouvrard,et al.  Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6 , 1995 .

[2]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[3]  Chen,et al.  Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. , 1995, Physical review letters.

[4]  B. Morosin,et al.  X‐Ray Diffraction and Nuclear Quadrupole Resonance Studies of Chromium Trichloride , 1964 .

[5]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[6]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[7]  K. Hirakawa,et al.  Neutron Diffraction Study in One-Dimensional Antiferromagnet KCuF3 , 1973 .

[8]  G. Ouvrard,et al.  Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6 , 1991 .

[9]  H. L. Davis,et al.  Spin-Wave Analysis of the Sublattice Magnetization Behavior of Antiferromagnetic and Ferromagnetic CrCl3 , 1965 .

[10]  J. P. Remeika,et al.  Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering , 1971 .

[11]  Sang-Youn Park,et al.  Majorana fermions in the Kitaev quantum spin system α-RuCl3 , 2017, Nature Physics.

[12]  M. Stone,et al.  Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3 , 2015, 1503.08199.

[13]  Z. Sheng,et al.  Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe 3 , 2017, 1706.03239.

[14]  R. Valentí,et al.  Monoclinic crystal structure of α − RuCl 3 and the zigzag antiferromagnetic ground state , 2015, 1509.02670.

[15]  J. Dillon Ferromagnetism and Anisotropy of Chromium Tribromide , 1964 .

[16]  Jr.,et al.  Magnetic Behavior and Spin-Lattice Coupling in Cleavable, van der Waals Layered CrCl3 Crystals , 2017, 1706.01796.

[17]  H. Kadowaki,et al.  Neutron Scattering Study of Successive Phase Transitions in Triangular Lattice Antiferromagnet CsNiCl3 , 1987 .

[18]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[19]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[20]  R. A. Stokes,et al.  A ferromagnetic insulating substrate for the epitaxial growth of topological insulators , 2013 .

[21]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[22]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[23]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[24]  John B. Goodenough,et al.  An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ , 1958 .

[25]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[26]  R. E. Marsh The crystal structure of Cr2Si2Te6: Corrigendum , 1988 .

[27]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[28]  T. Berlijn,et al.  Long-range magnetic ordering in Na 2 IrO 3 , 2011, 1104.4046.

[29]  L. L. Handy,et al.  Structural Properties of Chromium(III) Iodide and Some Chromium(III) Mixed Halides , 1952 .

[30]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[31]  Laura D. Casto,et al.  Strong spin-lattice coupling in CrSiTe3 , 2015 .

[32]  Shiming Zhou,et al.  Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3 , 2016, Scientific Reports.

[33]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[34]  J. Shim,et al.  Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal , 2018, Nature Materials.

[35]  R. Sakuma Symmetry-adapted Wannier functions in the maximal localization procedure , 2013, 1306.0032.

[36]  Figueiredo,et al.  Anisotropic Heisenberg ferromagnetic model in two dimensions. , 1995, Physical review. B, Condensed matter.