3D Adaptive Finite Element Method for a Phase Field Model for the Moving Contact Line Problems

In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. Therefore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable.

[1]  Ping Sheng,et al.  Moving contact line over undulating surfaces , 2006 .

[2]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[3]  Qingming Chang,et al.  Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method , 2006 .

[4]  Min Gao,et al.  A gradient stable scheme for a phase field model for the moving contact line problem , 2012, J. Comput. Phys..

[5]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[6]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[7]  Ping Sheng,et al.  Moving contact line on chemically patterned surfaces , 2008, Journal of Fluid Mechanics.

[8]  Ping Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Chunfeng Zhou,et al.  Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing , 2006, J. Comput. Phys..

[10]  Ruo Li,et al.  A General Moving Mesh Framework in 3D and its Application for Simulating the Mixture of Multi-Phase Flows , 2008 .

[11]  Yana Di,et al.  Precursor simulations in spreading using a multi-mesh adaptive finite element method , 2009, J. Comput. Phys..

[12]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[13]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[16]  A. Dupuis,et al.  Jetting Micron-Scale Droplets onto Chemically Heterogeneous Surfaces , 2003 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[19]  J. Yeomans,et al.  Modelling drop dynamics on patterned surfaces , 2007 .

[20]  Roland Glowinski,et al.  A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line , 2011, J. Comput. Phys..

[21]  P. Sheng,et al.  Molecular Hydrodynamics of the Moving Contact Line in Two-Phase Immiscible Flows , 2005, cond-mat/0510403.

[22]  Chunfeng Zhou,et al.  3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids , 2010, J. Comput. Phys..

[23]  G. F. Roach,et al.  Inverse problems and imaging , 1991 .

[24]  A. Dupuis,et al.  Droplet dynamics on patterned substrates , 2005 .

[25]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[26]  Ruo Li,et al.  A multi-mesh adaptive finite element approximation to phase field models , 2009 .

[27]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[28]  Héctor D. Ceniceros,et al.  Three-dimensional, fully adaptive simulations of phase-field fluid models , 2010, J. Comput. Phys..