Cosmological constraints from noisy convergence maps through deep learning

Deep learning is a powerful analysis technique that has recently been proposed as a method to constrain cosmological parameters from weak lensing mass maps. Because of its ability to learn relevant features from the data, it is able to extract more information from the mass maps than the commonly used power spectrum, and thus achieve better precision for cosmological parameter measurement. We explore the advantage of convolutional neural networks over the power spectrum for varying levels of shape noise and different smoothing scales applied to the maps. We compare the cosmological constraints from the two methods in the ${\mathrm{\ensuremath{\Omega}}}_{M}\ensuremath{-}{\ensuremath{\sigma}}_{8}$ plane for sets of $400\text{ }\text{ }{\mathrm{deg}}^{2}$ convergence maps. We find that, for a shape noise level corresponding to $8.53\text{ }\text{ }\mathrm{galaxies}/{\mathrm{arcmin}}^{2}$ and the smoothing scale of ${\ensuremath{\sigma}}_{s}=2.34\text{ }\text{ }\mathrm{arcmin}$, the network is able to generate 45% tighter constraints. For a smaller smoothing scale of ${\ensuremath{\sigma}}_{s}=1.17$ the improvement can reach $\ensuremath{\sim}50%$, while for a larger smoothing scale of ${\ensuremath{\sigma}}_{s}=5.85$, the improvement decreases to 19%. The advantage generally decreases when the noise level and smoothing scales increase. We present a new training strategy to train the neural network with noisy data, as well as considerations for practical applications of the deep learning approach.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Jean-Luc Starck,et al.  Cosmological constraints with weak-lensing peak counts and second-order statistics in a large-field survey , 2016, 1612.02264.

[3]  T. Hayler,et al.  Erratum: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar (Physical Review D - Particles, Fields, Gravitation and Cosmology) , 2012 .

[4]  A. Amara,et al.  Weak lensing peak statistics in the era of large scale cosmological surveys , 2018, Journal of Cosmology and Astroparticle Physics.

[5]  S. Hilbert,et al.  Optimized detection of shear peaks in weak lensing maps , 2011, 1110.4635.

[6]  T. Schrabback,et al.  Weak lensing from space: first cosmological constraints from three-point shear statistics★ , 2010, 1005.4941.

[7]  P. Schneider,et al.  Intrinsic galaxy shapes and alignments – I. Measuring and modelling COSMOS intrinsic galaxy ellipticities , 2012, 1203.6833.

[8]  L. Waerbeke,et al.  The BAHAMAS project : the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation , 2017, 1712.02411.

[9]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[10]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[11]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[12]  M. May,et al.  Impact of magnification and size bias on the weak lensing power spectrum and peak statistics , 2013, 1310.7517.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Adam Amara,et al.  Integrated approach to cosmology: Combining CMB, large-scale structure and weak lensing , 2016, 1607.01014.

[15]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[16]  M. Lima,et al.  Super-sample covariance approximations and partial sky coverage , 2016, 1612.05958.

[17]  S. Krughoff,et al.  The effective number density of galaxies for weak lensing measurements in the LSST project , 2013, 1305.0793.

[18]  Ian Smail,et al.  Gravitational lensing of distant field galaxies by rich clusters - I. Faint galaxy redshift distributions. , 1994 .

[19]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[20]  H. Hoekstra,et al.  KiDS-450: cosmological constraints from weak lensing peak statistics - I. Inference from analytical prediction of high signal-to-noise ratio convergence peaks , 2017, 1709.07651.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[23]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[24]  B. Jain,et al.  The three‐point correlation function in cosmology , 2002, astro-ph/0209167.

[25]  Daniel J. Hsu,et al.  Non-Gaussian information from weak lensing data via deep learning , 2018, ArXiv.

[26]  Columbia University,et al.  Origin of weak lensing convergence peaks , 2016, 1606.01318.

[27]  Intrinsic correlation of galaxy shapes: implications for weak lensing measurements , 2000, astro-ph/0005269.

[28]  Adam Amara,et al.  Fast point spread function modeling with deep learning , 2018, Journal of Cosmology and Astroparticle Physics.

[29]  Morgan May,et al.  Validity of the Born approximation for beyond Gaussian weak lensing observables , 2016, 1612.00852.

[30]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[31]  Adam Amara,et al.  Noise bias in weak lensing shape measurements , 2012, 1203.5050.

[32]  Laurence Perreault Levasseur,et al.  Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing , 2017, 1708.08843.

[33]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[34]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[35]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[36]  Andrea Petri,et al.  Mocking the weak lensing universe: The LensTools Python computing package , 2016, Astron. Comput..

[37]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[38]  Jean-Luc Starck,et al.  Cosmological model discrimination with weak lensing , 2009 .

[39]  Neil Genzlinger A. and Q , 2006 .

[40]  Edwin Valentijn,et al.  KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.

[41]  Cullan Howlett,et al.  L-PICOLA: A parallel code for fast dark matter simulation , 2015, Astron. Comput..

[42]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[43]  M. Kunz,et al.  Inadequacy of internal covariance estimation for super-sample covariance , 2017, 1703.03337.

[44]  Joachim Stadel,et al.  Matter power spectrum and the challenge of percent accuracy , 2015, 1503.05920.

[45]  Naoki Yoshida,et al.  IMPACT OF BARYONIC PROCESSES ON WEAK-LENSING COSMOLOGY: POWER SPECTRUM, NONLOCAL STATISTICS, AND PARAMETER BIAS , 2015, 1501.02055.

[46]  Bruce A. Bassett,et al.  Painting galaxies into dark matter haloes using machine learning , 2017, 1712.03255.

[47]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[48]  C. B. D'Andrea,et al.  Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data , 2016, 1603.05040.

[49]  Alexandre Refregier,et al.  PyCosmo: An integrated cosmological Boltzmann solver , 2017, Astron. Comput..

[50]  Massimo Brescia,et al.  A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data , 2016, 1612.02173.

[51]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[52]  Morgan May,et al.  Sample variance in weak lensing: How many simulations are required? , 2016, 1601.06792.

[53]  S. H. Wright,et al.  § 79 , 2018, AktG.

[54]  R. Teyssier,et al.  A new method to quantify the effects of baryons on the matter power spectrum , 2015, 1510.06034.

[55]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[56]  J. Kneib,et al.  Cosmological constraints from weak lensing peak statistics with Canada–France–Hawaii Telescope Stripe 82 Survey , 2014, 1412.3683.

[57]  Quantifying lost information due to covariance matrix estimation in parameter inference , 2016, 1609.00504.

[58]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[59]  P. Schneider,et al.  The cosmological information of shear peaks: beyond the abundance , 2013, 1301.5001.

[60]  M. May,et al.  Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data , 2014, 1412.0757.

[61]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 results: weak lensing shape catalogues , 2017, Monthly Notices of the Royal Astronomical Society.

[62]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.