Logic Programming for Knowledge Representation

This note provides background information and references to the tutorial on recent research developments in logic programming inspired by needs of knowledge representation.

[1]  Stefan Woltran,et al.  Semantical characterizations and complexity of equivalences in answer set programming , 2005, TOCL.

[2]  Stefan Woltran,et al.  Modularity Aspects of Disjunctive Stable Models , 2007, LPNMR.

[3]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[4]  Chitta Baral,et al.  Logic Programming and Knowledge Representation , 1994, J. Log. Program..

[5]  Michael Gelfond,et al.  Logic programming and knowledge representation—The A-Prolog perspective , 2002 .

[6]  Miroslaw Truszczynski The Modal Logic S4F, the Default Logic, and the Logic Here-and-There , 2007, AAAI.

[7]  Eugenia Ternovska,et al.  A logic of nonmonotone inductive definitions , 2008, TOCL.

[8]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[9]  Thomas Eiter,et al.  Database Theory - Icdt 2005 , 2008 .

[10]  Joost Vennekens,et al.  An Algebraic Account of Modularity in ID-logic , 2005, Answer Set Programming.

[11]  David Pearce,et al.  Strongly equivalent logic programs , 2001, ACM Trans. Comput. Log..

[12]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[13]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[14]  Wolfgang Faber,et al.  Recursive Aggregates in Disjunctive Logic Programs: Semantics and Complexity , 2004, JELIA.

[15]  Eugenia Ternovska,et al.  Inductive situation calculus , 2004, Artif. Intell..

[16]  Maurice Bruynooghe,et al.  Ultimate Well-Founded and Stable Semantics for Logic Programs with Aggregates , 2001, ICLP.

[17]  Stefan Woltran,et al.  Complexity of Rule Redundancy in Non-ground Answer-Set Programming over Finite Domains , 2007, LPNMR.

[18]  Miroslaw Truszczynski,et al.  DATALOG with Constraints - An Answer-Set Programming System , 2000, AAAI/IAAI.

[19]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[20]  Fangzhen Lin Reducing Strong Equivalence of Logic Programs to Entailment in Classical Propositional Logic , 2002, KR.

[21]  Victor W. Marek,et al.  Logic Programs with Abstract Constraint Atoms , 2004, AAAI.

[22]  Miroslaw Truszczynski,et al.  Pbmodels - Software to Compute Stable Models by Pseudoboolean Solvers , 2005, LPNMR.

[23]  Georg Gottlob,et al.  On the computational cost of disjunctive logic programming: Propositional case , 1995, Annals of Mathematics and Artificial Intelligence.

[24]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[25]  Peter J. Stuckey,et al.  Semantics of Logic Programs with Aggregates , 1991, ISLP.

[26]  Nikolay Pelov,et al.  Semantics of logic programs with aggregates , 2004 .

[27]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[28]  Vladimir Lifschitz,et al.  Splitting a Logic Program , 1994, ICLP.

[29]  Stefan Woltran,et al.  Strong and Uniform Equivalence in Answer-Set Programming: Characterizations and Complexity Results for the Non-Ground Case , 2005, AAAI.

[30]  Enrico Pontelli,et al.  Smodels with CLP and Its Applications: A Simple and Effective Approach to Aggregates in ASP , 2004, ICLP.

[31]  Miroslaw Truszczynski,et al.  Properties of Programs with Monotone and Convex Constraints , 2005, AAAI.

[32]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[33]  David Pearce,et al.  A Characterization of Strong Equivalence for Logic Programs with Variables , 2007, LPNMR.

[34]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[35]  Adrian Walker,et al.  Towards a Theory of Declarative Knowledge , 1988, Foundations of Deductive Databases and Logic Programming..

[36]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[37]  Enrico Pontelli,et al.  Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms , 2006, AAAI.

[38]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[39]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[40]  Marc Denecker,et al.  The Well-Founded Semantics Is the Principle of Inductive Definition , 1998, JELIA.

[41]  Victor W. Marek,et al.  The Logic Programming Paradigm: A 25-Year Perspective , 2011 .

[42]  Jack Minker Foundations of deductive databases and logic programming , 1988 .

[43]  Hajnal Andréka,et al.  The generalized completeness of Horn predicate-logic as a programming language , 1978, Acta Cybern..

[44]  Eugenia Ternovska,et al.  A Logic for Non-Monotone Inductive Definitions , 2005, ArXiv.

[45]  Miroslaw Truszczynski,et al.  Properties and Applications of Programs with Monotone and Convex Constraints , 2006, J. Artif. Intell. Res..

[46]  Stefan Woltran,et al.  On Solution Correspondences in Answer-Set Programming , 2005, IJCAI.

[47]  Joost Vennekens,et al.  Logic Programming , 2004, Lecture Notes in Computer Science.

[48]  Victor W. Marek,et al.  Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning , 2000 .

[49]  Miroslaw Truszczynski,et al.  Predicate-calculus-based logics for modeling and solving search problems , 2006, TOCL.

[50]  Jack Minker,et al.  Logic-Based Artificial Intelligence , 2000 .

[51]  David G. Mitchell,et al.  A Framework for Representing and Solving NP Search Problems , 2005, AAAI.

[52]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[53]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[54]  Miroslaw Truszczynski,et al.  Strong and uniform equivalence of nonmonotonic theories – an algebraic approach , 2006, Annals of Mathematics and Artificial Intelligence.

[55]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[56]  Antonis C. Kakas,et al.  Computational Logic: Logic Programming and Beyond , 2002, Lecture Notes in Computer Science.

[57]  Michael Gelfond,et al.  Representing Knowledge in A-Prolog , 2002, Computational Logic: Logic Programming and Beyond.

[58]  Victor W. Marek,et al.  Set Constraints in Logic Programming , 2004, LPNMR.

[59]  Thomas Eiter,et al.  Uniform Equivalence of Logic Programs under the Stable Model Semantics , 2003, ICLP.

[60]  Joost Vennekens,et al.  Splitting an Operator , 2004, ICLP.

[61]  Wolfgang Faber,et al.  Magic Sets and their application to data integration , 2005, J. Comput. Syst. Sci..

[62]  Enrico Pontelli,et al.  A Constructive semantic characterization of aggregates in answer set programming , 2007, Theory Pract. Log. Program..

[63]  Hudson Turner,et al.  Strong equivalence made easy: nested expressions and weight constraints , 2003, Theory and Practice of Logic Programming.

[64]  Miroslaw Truszczynski,et al.  The First Answer Set Programming System Competition , 2007, LPNMR.