A 64 $\times$ 64 Pixels UWB Wireless Temporal-Difference Digital Image Sensor

In this paper we present a low power temporal-difference image sensor with wireless communication capability designed specifically for imaging sensor networks. The event-based image sensor features a 64 × 64 pixel array and can also report standard analog intensity images. An ultra-wide-band radio channel allows to transmit digital temporal difference images wirelessly to a receiver with high rates and reduced power consumption. The sensor can wake up the radio when it detects a specific number of pixels intensity modulation, so that only significant frames are communicated. The prototype chip was implemented using a 2-poly 3-metal AMIS 0.5 μ m CMOS process. Power consumption is 0.9 mW for the sensor and 15 mW for radio transmission to distance of 4 m with rates of 1.3 Mbps and 160 fps.

[1]  A. Dickinson,et al.  A 256/spl times/256 CMOS active pixel image sensor with motion detection , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[2]  Jong-Wha Chong,et al.  A real-time JPEG encoder for 1.3 mega pixel CMOS image sensor SoC , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.

[3]  Ian Oppermann,et al.  UWB Theory and Applications: Oppermann/UWB: Theory and Applications , 2005 .

[4]  Shoji Kawahito,et al.  A High-Speed CMOS Image Sensor with On-chip Parallel Image Compression Circuits , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[5]  M. Gottardi,et al.  A 100 $\mu$ W 128 $\times$ 64 Pixels Contrast-Based Asynchronous Binary Vision Sensor for Sensor Networks Applications , 2009, IEEE Journal of Solid-State Circuits.

[6]  Eric R. Fossum,et al.  A 1.5-V 550-/spl mu/W 176/spl times/144 autonomous CMOS active pixel image sensor , 2003 .

[7]  Gert Cauwenberghs,et al.  CMOS Camera With In-Pixel Temporal Change Detection and ADC , 2007, IEEE Journal of Solid-State Circuits.

[8]  Eugenio Culurciello,et al.  A 1.2mW CMOS temporal-difference image sensor for sensor networks , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[9]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[10]  Yichuang Sun,et al.  Efficient modeling and analysis of clock feed-through and charge injection of switched current circuits , 2001, Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555).

[11]  Eugenio Culurciello,et al.  A low-power silicon-on-sapphire tunable ultra-wideband transmitter , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[12]  R.W. Brodersen,et al.  Design of a Sub-mW 960-MHz UWB CMOS LNA , 2006, IEEE Journal of Solid-State Circuits.

[13]  R. Etienne-Cummings,et al.  Temporal change threshold detection imager , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[14]  Amine Bermak,et al.  A low power CMOS imager based on time-to-first-spike encoding and fair AER , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[15]  Brian P. Ginsburg,et al.  Low-Power Impulse UWB Architectures and Circuits , 2009, Proceedings of the IEEE.

[16]  V. Gruev,et al.  A pipelined temporal difference imager , 2002, IEEE Journal of Solid-State Circuits.

[17]  Amine Bermak,et al.  Arbitrated Time-to-First Spike CMOS Image Sensor With On-Chip Histogram Equalization , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Kwabena Boahen,et al.  Point-to-point connectivity between neuromorphic chips using address events , 2000 .

[19]  Massimo Gottardi,et al.  A 100μW 64×128-Pixel Contrast-Based Asynchronous Binary Vision Sensor for Wireless Sensor Networks , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  R. Genov,et al.  Focal-Plane Algorithmically-Multiplying CMOS Computational Image Sensor , 2009, IEEE Journal of Solid-State Circuits.

[21]  Alexander Fish,et al.  CMOS Image Sensors With Self-Powered Generation Capability , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  R. Gharpurey,et al.  An Agile, Ultra-Wideband Pulse Radio Transceiver With Discrete-Time Wideband-IF , 2009, IEEE Journal of Solid-State Circuits.

[23]  Shoushun Chen,et al.  A 64×64 pixels UWB wireless temporal-difference digital image sensor , 2010, ISCAS.

[24]  M. Paindavoine,et al.  A 10 000 fps CMOS Sensor With Massively Parallel Image Processing , 2008, IEEE Journal of Solid-State Circuits.

[25]  A. Matsuzawa,et al.  A CMOS image sensor for focal-plane low-power motion vector estimation , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[26]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[27]  Eugenio Culurciello,et al.  A Low-Power High-Speed Ultra-Wideband Pulse Radio Transmission System , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[28]  Heinrich Garn,et al.  Wide dynamic range, high-speed machine vision with a 2×256 pixel temporal contrast vision sensor , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[29]  E. Culurciello,et al.  Arbitrated address event representation digital image sensor , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[30]  Ian Oppermann,et al.  UWB theory and applications , 2004 .

[31]  Amine Bermak,et al.  A CMOS Image Sensor With On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[32]  Sang-Gug Lee,et al.  Low-Power CMOS Energy Detection Transceiver for UWB Impulse Radio System , 2007, 2007 IEEE Custom Integrated Circuits Conference.