Fuzzy Programming Models for Minimax Location Problem

This paper discusses the minimax location problem with fuzzy locations of customers on a plane bounded by a convex polygon under a minmax criterion. Three types of fuzzy programming are presented for this problem according to different criteria, and Euclidean distances are assumed as the scenario. For solving the proposed models, a hybrid intelligent algorithm is designed.

[1]  Donald W. Hearn,et al.  Efficient Algorithms for the (Weighted) Minimum Circle Problem , 1982, Oper. Res..

[2]  J. R. Rao,et al.  Facility location problem on a network under multiple criteria ― fuzzy set theoretic approach , 1988 .

[3]  PradeHenri,et al.  The mean value of a fuzzy number , 1987 .

[4]  D. Hearn,et al.  Geometrical Solutions for Some Minimax Location Problems , 1972 .

[5]  Ronald R. Yager On the Evaluation of Uncertain Courses of Action , 2002, Fuzzy Optim. Decis. Mak..

[6]  Antonio González A study of the ranking function approach through mean values , 1990 .

[7]  R. L. Francis,et al.  A Network Flow Solution to a Multifacility Minimax Location Problem Involving Rectilinear Distances , 1974 .

[8]  Baoding Liu,et al.  A note on chance constrained programming with fuzzy coefficients , 1998, Fuzzy Sets Syst..

[9]  Booding Liu,et al.  Minimax Chance Constrained Programming Models for Fuzzy Decision Systems , 1998, Inf. Sci..

[10]  Baoding Liu,et al.  Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm , 2001, Fuzzy Sets Syst..

[11]  Carlos Ivorra,et al.  An exact algorithm for the fuzzy p-median problem , 1999, Eur. J. Oper. Res..

[12]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[13]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[14]  R. Tiwari,et al.  Fuzzy multi-criteria facility location problem , 1992 .

[15]  James G. Morris,et al.  A Linear Programming Approach to the Solution of Constrained Multi-Facility Minimax Location Problems where Distances are Rectangular , 1973 .

[16]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[17]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[18]  Baoding Liu,et al.  Chance constrained programming with fuzzy parameters , 1998, Fuzzy Sets Syst..

[19]  J. Darzentas A discrete location model with fuzzy accessibility measures , 1987 .

[20]  R. Tiwari,et al.  Bi-criteria multi facility location problem in fuzzy environment , 1993 .

[21]  Stanisław Heilpern,et al.  The expected value of a fuzzy number , 1992 .

[22]  Baoding Liu,et al.  Dependent-chance programming in fuzzy environments , 2000, Fuzzy Sets Syst..

[23]  Lourdes Campos,et al.  Linear programming problems and ranking of fuzzy numbers , 1989 .

[24]  Yian-Kui Liu,et al.  Expected Value Operator of Random Fuzzy Variable, Random Fuzzy Expected Value Models , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  D. Hearn,et al.  The Minimum Covering Sphere Problem , 1972 .