Erosion of synchronization in networks of coupled oscillators.

We report erosion of synchronization in networks of coupled phase oscillators, a phenomenon where perfect phase synchronization is unattainable in steady state, even in the limit of infinite coupling. An analysis reveals that the total erosion is separable into the product of terms characterizing coupling frustration and structural heterogeneity, both of which amplify erosion. The latter, however, can differ significantly from degree heterogeneity. Finally, we show that erosion is marked by the reorganization of oscillators according to their node degrees rather than their natural frequencies.

[1]  R. K. Brown BIOPHYSICS , 1931 .

[2]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[3]  A. T. Winfree,et al.  The prehistory of the Belousov-Zhabotinsky oscillator , 1984 .

[4]  B. Bollobás The evolution of random graphs , 1984 .

[5]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[6]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[7]  K. Dessouky,et al.  Network synchronization , 1985, Proceedings of the IEEE.

[8]  Y. Kuramoto,et al.  A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment , 1986 .

[9]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[10]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[11]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[12]  Daido,et al.  Multibranch Entrainment and Scaling in Large Populations of Coupled Oscillators. , 1996, Physical review letters.

[13]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[16]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[17]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[18]  Yoshiki Kuramoto,et al.  Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[20]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[21]  J. Kurths,et al.  Network synchronization, diffusion, and the paradox of heterogeneity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  J. Gómez-Gardeñes,et al.  From scale-free to Erdos-Rényi networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[25]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[26]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[27]  Robert F. Gilmour,et al.  Nonlinear dynamics of heart rhythm disorders , 2007 .

[28]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[29]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[30]  S. Strogatz,et al.  Solvable model for chimera states of coupled oscillators. , 2008, Physical review letters.

[31]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[32]  Erik M. Bollt,et al.  Master stability functions for coupled nearly identical dynamical systems , 2008, 0811.0649.

[33]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[34]  Edward Ott,et al.  Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Wolfrum,et al.  Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. , 2012, Physical review letters.

[36]  W. Marsden I and J , 2012 .

[37]  Per Sebastian Skardal,et al.  Hierarchical synchrony of phase oscillators in modular networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[39]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[40]  Dane Taylor,et al.  Optimal synchronization of complex networks. , 2014, Physical review letters.

[41]  Frank Jülicher,et al.  Synchronization dynamics in the presence of coupling delays and phase shifts. , 2014, Physical review letters.

[42]  Marc Timme,et al.  Kuramoto dynamics in Hamiltonian systems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.