Vacuolar Proton Pumps in Malaria Parasite Cells

The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.

[1]  V. Herrmann,et al.  Cloning and characterization of the vacuolar ATPase B subunit from Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[2]  Matthias Mann,et al.  Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion , 2001, Nature.

[3]  Y. Anraku,et al.  VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. , 1991, The Journal of biological chemistry.

[4]  C. Woodrow,et al.  Intraerythrocytic Plasmodium falciparum Expresses a High Affinity Facilitative Hexose Transporter* , 1999, The Journal of Biological Chemistry.

[5]  D. Scott,et al.  Characterization of Isolated Acidocalcisomes from Toxoplasma gondii Tachyzoites Reveals a Novel Pool of Hydrolyzable Polyphosphate* , 2002, The Journal of Biological Chemistry.

[6]  M. Foley,et al.  A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. , 1999, European journal of cell biology.

[7]  T. Oka,et al.  Three vha genes encode proteolipids of Caenorhabditis elegans vacuolar-type ATPase. Gene structures and preferential expression in an H-shaped excretory cell and rectal cells. , 1997, The Journal of biological chemistry.

[8]  P. Rathod,et al.  A membrane network for nutrient import in red cells infected with the malaria parasite. , 1997, Science.

[9]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[10]  Kiaran Kirk,et al.  pH Regulation in the Intracellular Malaria Parasite, Plasmodium falciparum , 1999, The Journal of Biological Chemistry.

[11]  S. Wünsch,et al.  Identification of a Chloroquine Importer in Plasmodium falciparum , 1997, The Journal of Biological Chemistry.

[12]  D. Scott,et al.  Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase. , 1999, The Biochemical journal.

[13]  P. A. Rea,et al.  AVP2, a sequence-divergent, K(+)-insensitive H(+)-translocating inorganic pyrophosphatase from Arabidopsis. , 2000, Plant physiology.

[14]  K. Joiner,et al.  The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. , 1998, Journal of cell science.

[15]  V. Herrmann,et al.  Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[16]  T. Mitamura,et al.  Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. , 1999, Biological & pharmaceutical bulletin.

[17]  Hye-Sook Kim,et al.  A Homologue ofN-Ethylmaleimide-sensitive Factor in the Malaria ParasitePlasmodium falciparum Is Exported and Localized in Vesicular Structures in the Cytoplasm of Infected Erythrocytes in the Brefeldin A-sensitive Pathway* , 2001, The Journal of Biological Chemistry.

[18]  D. Scott,et al.  Characterization of a Vacuolar Pyrophosphatase inTrypanosoma brucei and Its Localization to Acidocalcisomes , 1999, Molecular and Cellular Biology.

[19]  A. Vaidya,et al.  Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. , 2002, International journal for parasitology.

[20]  J. Wiesner,et al.  Differential Stimulation of the Na+/H+ Exchanger Determines Chloroquine Uptake in Plasmodium falciparum , 1998, The Journal of cell biology.

[21]  P. Delplace,et al.  Leupeptin alters the proteolytic processing of P126, the major parasitophorous vacuole antigen of Plasmodium falciparum. , 1989, Molecular and biochemical parasitology.

[22]  T. Mitamura,et al.  Vacuolar H+-ATPase Localized in Plasma Membranes of Malaria Parasite Cells, Plasmodium falciparum, Is Involved in Regional Acidification of Parasitized Erythrocytes* , 2000, The Journal of Biological Chemistry.

[23]  P. A. Rea,et al.  Two classes of plant-like vacuolar-type H(+)-pyrophosphatases in malaria parasites. , 2001, Molecular and biochemical parasitology.

[24]  K. Kirk,et al.  H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite* , 2001, The Journal of Biological Chemistry.

[25]  W. de Souza,et al.  Presence of a Plant-like Proton-pumping Pyrophosphatase in Acidocalcisomes of Trypanosoma cruzi* , 1998, The Journal of Biological Chemistry.

[26]  W. Mason,et al.  Acidic calcium pools in intraerythrocytic malaria parasites. , 1998, European journal of cell biology.

[27]  K. Kirk,et al.  Acidification of the Malaria Parasite's Digestive Vacuole by a H+-ATPase and a H+-pyrophosphatase* , 2003, The Journal of Biological Chemistry.

[28]  S. Luo,et al.  Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. , 2000, The Biochemical journal.

[29]  S. Luo,et al.  A plant‐like vacuolar H+‐pyrophosphatase in Plasmodium falciparum , 1999, FEBS letters.

[30]  K. Kirk,et al.  Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. , 2001, The Biochemical journal.

[31]  S. Ohkuma,et al.  Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages , 1981, The Journal of cell biology.