A computational framework for the personalized clinical treatment of glioblastoma multiforme

Mox, Dipartimento di Matematica, Politecnico di Milano, Italy Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy Correspondence Davide Ambrosi, Mox, Dipartimento di Matematica, Politecnico di Milano, Italy. Email: davide.ambrosi@polimi.it Funding information Istituto Nazionale di Alta Matematica ∖"Francesco Severi∖", Grant/Award Number: Progetto Giovani 2017; AIRC MFAG, Grant/Award Number: 17412

[1]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[2]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[3]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[4]  Dieter Klatt,et al.  Non‐invasive measurement of brain viscoelasticity using magnetic resonance elastography , 2008, NMR in biomedicine.

[5]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[6]  E. Kuhl,et al.  Constitutive Modeling of Brain Tissue: Current Perspectives , 2016 .

[7]  Thomas Hillen,et al.  A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread , 2018, Bulletin of mathematical biology.

[8]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[9]  S. Torquato,et al.  Pattern of self‐organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model , 2001, Cell proliferation.

[10]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[11]  T. Hillen,et al.  Glioma follow white matter tracts: a multiscale DTI-based model , 2015, Journal of mathematical biology.

[12]  J. Murray,et al.  A quantitative model for differential motility of gliomas in grey and white matter , 2000, Cell proliferation.

[13]  R. Guillevin,et al.  Simulation of anisotropic growth of low‐grade gliomas using diffusion tensor imaging , 2005, Magnetic resonance in medicine.

[14]  I. Puri,et al.  Hybrid mathematical model of glioma progression , 2009, Cell proliferation.

[15]  Chul-Kee Park,et al.  Cerebral Blood Volume Analysis in Glioblastomas Using Dynamic Susceptibility Contrast-Enhanced Perfusion MRI: A Comparison of Manual and Semiautomatic Segmentation Methods , 2013, PloS one.

[16]  Kristin R. Swanson,et al.  The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion , 2007, Journal of neuropathology and experimental neurology.

[17]  Susumu Mori,et al.  Unique patterns of diffusion directionality in rat brain tumors revealed by high‐resolution diffusion tensor MRI , 2007, Magnetic resonance in medicine.

[18]  John J Lannutti,et al.  Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. , 2009, Tissue engineering. Part C, Methods.

[19]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[20]  L Leon Chen,et al.  An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma , 2010, Physics in medicine and biology.

[21]  Ivan Cohen,et al.  In Vivo Mapping of Brain Elasticity in Small Animals Using Shear Wave Imaging , 2011, IEEE Transactions on Medical Imaging.

[22]  Christine Haberler,et al.  Histopathologic assessment of hot‐spot microvessel density and vascular patterns in glioblastoma: Poor observer agreement limits clinical utility as prognostic factors , 2006, Cancer.

[23]  Simon K. Warfield,et al.  Comprehensive Maximum Likelihood Estimation of Diffusion Compartment Models Towards Reliable Mapping of Brain Microstructure , 2016, MICCAI.

[24]  Yanping Cao,et al.  Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis , 2015, Biomechanics and modeling in mechanobiology.

[25]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[26]  C. Schaller,et al.  MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW , 2005 .

[27]  H. Frieboes,et al.  An integrated computational/experimental model of tumor invasion. , 2006, Cancer research.

[28]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[29]  Ralph Sinkus,et al.  In vivo brain viscoelastic properties measured by magnetic resonance elastography , 2008, NMR in biomedicine.

[30]  P. Gullino,et al.  Diffusion and convection in normal and neoplastic tissues. , 1974, Cancer research.

[31]  R. Stupp,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Review Temozolomide for Brain Tumours Current and Future Developments in the Use of Temozolomide for the Treatment of Brain Tumours , 2022 .

[32]  Harald Garcke,et al.  A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport , 2015, 1508.00437.

[33]  Elena Faggiano,et al.  Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model , 2015, PloS one.

[34]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[35]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[36]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[37]  R. M. Ford,et al.  Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients , 1991, Bulletin of mathematical biology.

[38]  Ron Kikinis,et al.  3D Slicer , 2012, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[39]  P. Ciarletta,et al.  Solid Tumors Are Poroelastic Solids with a Chemo-mechanical Feedback on Growth , 2017, Journal Of Elasticity.

[40]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[41]  R. Jenkins,et al.  Genetics of adult glioma. , 2012, Cancer genetics.

[42]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[43]  L. Preziosi,et al.  Multiphase models of tumour growth , 2008 .

[44]  D A Weitz,et al.  Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. , 2005, Biophysical journal.

[45]  Laird Ak DYNAMICS OF TUMOR GROWTH. , 1964 .

[46]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[47]  K. Swanson,et al.  A mathematical model for brain tumor response to radiation therapy , 2009, Journal of mathematical biology.

[48]  Dafna Ben Bashat,et al.  Classification of tumor area using combined DCE and DSC MRI in patients with glioblastoma , 2014, Journal of Neuro-Oncology.

[49]  Zhibin Huang,et al.  A Generalized Linear-Quadratic Model for Radiosurgery, Stereotactic Body Radiation Therapy, and High–Dose Rate Brachytherapy , 2010, Science Translational Medicine.

[50]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[51]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[52]  C. Balañà,et al.  Radiation and concomitant chemotherapy for patients with glioblastoma multiforme , 2014, Chinese journal of cancer.

[53]  Adrian C. Shieh,et al.  Biomechanical Forces Shape the Tumor Microenvironment , 2011, Annals of Biomedical Engineering.

[54]  J. Murray,et al.  Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion , 2003, Journal of the Neurological Sciences.

[55]  Gargi Chakraborty,et al.  Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. , 2009, Cancer research.

[56]  G Powathil,et al.  Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy , 2007, Physics in medicine and biology.

[57]  Pasquale Ciarletta,et al.  Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture , 2011 .

[58]  Jill S. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 , 2015, Neuro-oncology.

[59]  Víctor M. Pérez-García,et al.  Hypoxic Cell Waves Around Necrotic Cores in Glioblastoma: A Biomathematical Model and Its Therapeutic Implications , 2012, Bulletin of Mathematical Biology.

[60]  J. Fowler The linear-quadratic formula and progress in fractionated radiotherapy. , 1989, The British journal of radiology.

[61]  A. Anderson,et al.  An evolutionary hybrid cellular automaton model of solid tumour growth. , 2007, Journal of theoretical biology.

[62]  K. Painter,et al.  Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. , 2013, Journal of theoretical biology.

[63]  A. Concha Theory of Mixtures , 2014 .

[64]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[65]  K Hendrickson,et al.  Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach , 2010, Physics in medicine and biology.

[66]  Philip Hahnfeldt,et al.  Simple ODE models of tumor growth and anti-angiogenic or radiation treatment , 2001 .

[67]  Paola F. Antonietti,et al.  A Cahn‐Hilliard–type equation with application to tumor growth dynamics , 2017 .

[68]  J. Murray,et al.  The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. , 1997, Journal of neuropathology and experimental neurology.

[69]  W. Ehlers,et al.  Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem , 2015, Computer methods in biomechanics and biomedical engineering.

[70]  Harald Garcke,et al.  A coupled surface-Cahn--Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes , 2015, 1509.03655.

[71]  Ying Chen,et al.  Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. , 2014, Journal of theoretical biology.

[72]  Sujit S. Prabhu,et al.  Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes , 2012, Journal of Neuro-Oncology.

[73]  R K Jain,et al.  Transport of molecules in the tumor interstitium: a review. , 1987, Cancer research.

[74]  John Missimer,et al.  Measurement of the extracellular space in brain tumors using 76Br-bromide and PET. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[75]  S. F. C. O’Rourke,et al.  Linear quadratic and tumour control probability modelling in external beam radiotherapy , 2009, Journal of mathematical biology.

[76]  Antonios Armaou,et al.  Modeling the Effect of Chemotaxis In Glioblastoma Tumor Progression , 2011 .

[77]  Hervé Delingette,et al.  Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation , 2005, IEEE Transactions on Medical Imaging.

[78]  Daniel P Barboriak,et al.  Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. , 2006, Radiology.

[79]  R. K. Jain,et al.  Interstitial fluid pressure in intracranial tumours in patients and in rodents. , 1997, British Journal of Cancer.

[80]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[81]  M. Doi,et al.  Dynamic coupling between stress and composition in polymer solutions and blends , 1992 .

[82]  John S. Lowengrub,et al.  A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth , 2008, J. Sci. Comput..