Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions.

[1]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[2]  L. Hicke Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. , 1999, Trends in cell biology.

[3]  Xiao Zhen Zhou,et al.  Function of WW domains as phosphoserine- or phosphothreonine-binding modules. , 1999, Science.

[4]  J. Huibregtse,et al.  Functional Domains of the Rsp5 Ubiquitin-Protein Ligase , 1999, Molecular and Cellular Biology.

[5]  C. M. Adams,et al.  Inhibition of the Epithelial Na+ Channel by Interaction of Nedd4 with a PY Motif Deleted in Liddle’s Syndrome* , 1998, The Journal of Biological Chemistry.

[6]  Christopher A. Ross,et al.  Atrophin-1, the DRPLA Gene Product, Interacts with Two Families of WW Domain-Containing Proteins , 1998, Molecular and Cellular Neuroscience.

[7]  E. Alnemri,et al.  Caspase-mediated Cleavage of the Ubiquitin-protein Ligase Nedd4 during Apoptosis* , 1998, The Journal of Biological Chemistry.

[8]  N. Copeland,et al.  The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice , 1998, Nature Genetics.

[9]  R. Haguenauer‐Tsapis,et al.  Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein , 1997, The EMBO journal.

[10]  M. Sudol,et al.  Interaction of WW Domains with Hematopoietic Transcription Factor p45/NF-E2 and RNA Polymerase II* , 1997, The Journal of Biological Chemistry.

[11]  A. Sparks,et al.  Identification of Novel Human WW Domain-containing Proteins by Cloning of Ligand Targets* , 1997, The Journal of Biological Chemistry.

[12]  N. Copeland,et al.  cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. , 1997, Genomics.

[13]  G. Vaduva,et al.  MDP1, a Saccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase gene RSP5. , 1997, Genetics.

[14]  R. Lagunas,et al.  Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. , 1997, FEMS Microbiology Letters.

[15]  H. Yashiroda,et al.  Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae , 1996, Molecular and Cellular Biology.

[16]  M. Imhof,et al.  Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors , 1996, Molecular and cellular biology.

[17]  B. André,et al.  Ubiquitination Mediated by the Npi1p/Rsp5p Ubiquitin-protein Ligase Is Required for Endocytosis of the Yeast Uracil Permease (*) , 1996, The Journal of Biological Chemistry.

[18]  O. Staub,et al.  WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. , 1996, The EMBO journal.

[19]  T. Kanda A ubiquitin-protein ligase (E3) mutation of Saccharomyces cerevisiae suppressed by co-overexpression of two ubiquitin-specific processing proteases. , 1996, Genes & genetic systems.

[20]  P. Leder,et al.  Formin binding proteins bear WWP/WW domains that bind proline‐rich peptides and functionally resemble SH3 domains. , 1996, The EMBO journal.

[21]  D. Beach,et al.  Pub1 acts as an E6‐AP‐like protein ubiquitiin ligase in the degradation of cdc25. , 1996, The EMBO journal.

[22]  M. Sudol,et al.  Structure and function of the WW domain. , 1996, Progress in biophysics and molecular biology.

[23]  B. André,et al.  NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin—protein ligase , 1995, Molecular microbiology.

[24]  Martin Scheffner,et al.  Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade , 1995, Nature.

[25]  Morris Schambelan,et al.  Liddle's syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel , 1994, Cell.

[26]  M. Scheffner,et al.  The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 , 1993, Cell.

[27]  J. W. Rooney,et al.  SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. , 1992, Genes & development.

[28]  S. Kumar,et al.  Identification of a set of genes with developmentally down-regulated expression in the mouse brain. , 1992, Biochemical and biophysical research communications.

[29]  R. Kriz,et al.  Cloning and expression of multiple protein kinase C cDNAs , 1986, Cell.