Trefftz, collocation, and other boundary methods—A comparison

In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007

[1]  H. Motz,et al.  The treatment of singularities of partial differential equations by relaxation methods , 1947 .

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .

[4]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[5]  J. Bramble,et al.  Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditions , 1970 .

[6]  James H. Bramble,et al.  Least squares methods for 2th order elliptic boundary-value problems , 1971 .

[7]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[8]  James H. Bramble,et al.  Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems , 1971 .

[9]  L. Shampine,et al.  A collocation method for boundary value problems , 1972 .

[10]  Thomas R. Lucas,et al.  Some Collocation Methods for Nonlinear Boundary Value Problems , 1972 .

[11]  J. Whiteman,et al.  Treatment of harmonic mixed boundary problems by conformal transformation methods , 1972 .

[12]  James H. Bramble,et al.  A Generalized Ritz-Least-Squares Method for Dirichlet Problems , 1973 .

[13]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[14]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[15]  Burton Wendroff,et al.  The Relation Between the Galerkin and Collocation Methods Using Smooth Splines , 1974 .

[16]  Robert D. Russell,et al.  Collocation for systems of boundary value problems , 1974 .

[17]  J. Barkley Rosser,et al.  A Power Series Solution of a Harmonic Mixed Boundary Value Problem. , 1975 .

[18]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[19]  R. D. Russell,et al.  Orthogonal Collocation for Elliptic Partial Differential Equations , 1976 .

[20]  George M. Fix,et al.  HYBRID FINITE ELEMENT METHODS , 1976 .

[21]  SOME COLLOCATION-GALERKIN METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS* , 1976 .

[22]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[23]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[24]  J. Jirousek,et al.  A powerful finite element for plate bending , 1977 .

[25]  J. Bramble,et al.  Higher order local accuracy by averaging in the finite element method , 1977 .

[26]  A C(0) -Collocation-Finite Element Method for Two-Point Boundary Value Problems and One Space Dimensional Parabolic Problems , 1977 .

[27]  Robert D. Russell,et al.  A COMPARISON OF COLLOCATION AND FINITE DIFFERENCES FOR TWO-POINT BOUNDARY VALUE PROBLEMS* , 1977 .

[28]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[29]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[30]  O. Zienkiewicz,et al.  The coupling of the finite element method and boundary solution procedures , 1977 .

[31]  A Collocation–Galerkin Method for the Two Point Boundary Value Problem Using Continuous Piecewise Polynomial Spaces , 1977 .

[32]  P. Percell,et al.  A Local Residual Finite Element Procedure for Elliptic Equations , 1978 .

[33]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[34]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[35]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[36]  L. M. Delves,et al.  An Implicit Matching Principle for Global Element Calculations , 1979 .

[37]  Mary F. Wheeler,et al.  A $C^1 $ Finite Element Collocation Method for Elliptic Equations , 1980 .

[38]  F. Oliveira Collocation and residual correction , 1980 .

[39]  H. Gourgeon,et al.  Boundary Methods. C-Complete Systems for the Biharmonic Equations , 1981 .

[40]  L. M. Delves,et al.  Analysis of Global Expansion Methods: Weakly Asymptotically Diagonal Systems , 1981 .

[41]  James H. Bramble,et al.  The Lagrange multiplier method for Dirichlet’s problem , 1981 .

[42]  Juhani Pitkäranta,et al.  The finite element method with Lagrange multipliers for domains with corners , 1981 .

[43]  Boundary methods, c-complete systems for stokes problems , 1982 .

[44]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[45]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[46]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[47]  W. Wendland Boundary Element Methods and Their Asymptotic Convergence , 1983 .

[48]  Gene H. Golub,et al.  Matrix computations , 1983 .

[49]  Zi-Cai Li,et al.  On the simplified hybrid-combined method , 1983 .

[50]  R. B. Kellogg,et al.  Least Squares Methods for Elliptic Systems , 1985 .

[51]  O. C. Zienkiewicz,et al.  Generalized finite element analysis with T-complete boundary solution functions , 1985 .

[52]  John W. Barrett,et al.  Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .

[53]  Ismael Herrera,et al.  Trefftz method: Fitting boundary conditions , 1987 .

[54]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[55]  Rudolf Mathon,et al.  Boundary methods for solving elliptic problems with singularities and interfaces , 1987 .

[56]  Generalized hybrid‐combined methods for the singularity problems of homogeneous elliptic equations , 1988 .

[57]  T. D. Bui,et al.  Six combinations of the Ritz‐Galerkin and finite element methods for elliptic boundary value problems , 1988 .

[58]  T. Chan,et al.  Effectively Well-Conditioned Linear Systems , 1988 .

[59]  Asymptotic expansions for the discretization error of least squares solutions of linear boundary value problems , 1988 .

[60]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[61]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[62]  Graham F. Carey,et al.  Convergence studies of least-squares finite elements for first-order systems , 1989 .

[63]  The complete Trefftz method , 1989 .

[64]  Solving Problems With Singularities Using Boundary Elements , 1989 .

[65]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[66]  Error and stability analysis of boundary methods for elliptic problems with interfaces , 1990 .

[67]  Boundary approximation methods for solving elliptic problems on unbounded domains , 1990 .

[68]  T. Bui,et al.  The simplified hybrid-combined methods for Laplace's equation with singularities , 1990 .

[69]  Å. Björck Least squares methods , 1990 .

[70]  Numerical methods for elliptic problems with singularities : boundary methods and nonconforming combinations , 1990 .

[71]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[72]  A. Aziz,et al.  A weighted least squares method for the backward-forward heat equation , 1991 .

[73]  O. C. Zienkiewicz,et al.  Solution of Helmholtz equation by Trefftz method , 1991 .

[74]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[75]  Alfio Quarteroni,et al.  Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems , 1992 .

[76]  R. Shaw,et al.  The embedding integral and the Trefftz method for potential problems with partitioning , 1992 .

[77]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[78]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[79]  R. Gilbert,et al.  Transformations, transmutations, and kernel functions , 1992 .

[80]  T. Bui,et al.  Coupling techniques in boundary-combined methods , 1992 .

[81]  T. Zhou,et al.  A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations , 1993 .

[82]  A Lagrange multiplier method for the interface equations from electromagnetic applications , 1993 .

[83]  Ivo Babuška,et al.  The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities , 1993 .

[84]  J. Mandel,et al.  Convergence of a substructuring method with Lagrange multipliers , 1994 .

[85]  P. Hansen,et al.  The effective condition number applied to error analysis of certain boundary collocation methods , 1994 .

[86]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[87]  E. A. Volkov Block Method for Solving the Laplace Equation and for Constructing Conformal Mappings , 1994 .

[88]  Bernard Bialecki,et al.  H 1 -norm error bounds for piecewise Hermite bicubic orthogonal spline collocation schemes for elliptic boundary value problems , 1994 .

[89]  E. Kita,et al.  Trefftz method 70 years , 1995 .

[90]  Yao Zhen-han,et al.  Some applications of the Trefftz method in linear elliptic boundary-value problems , 1995 .

[91]  J. Jiroušek,et al.  T-elements: a finite element approach with advantages of boundary solution methods , 1995 .

[92]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[93]  R. P. Shaw,et al.  The Trefftz method as an integral equation , 1995 .

[94]  Eisuke Kita,et al.  Boundary-type sensitivity analysis scheme based on indirect Trefftz formulation , 1995 .

[95]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[96]  E. Kita,et al.  Trefftz method: an overview , 1995 .

[97]  Reinhard E. Piltner,et al.  Recent developments in the Trefftz method for finite element and boundary element applications , 1995 .

[98]  Y. Cheung,et al.  Trefftz direct method , 1995 .

[99]  Ismael Herrera,et al.  Trefftz-Herrera domain decomposition , 1995 .

[100]  A. P. Zieliński,et al.  On trial functions applied in the generalized Trefftz method , 1995 .

[101]  J. Jirousek,et al.  T-elements: State of the art and future trends , 1996 .

[102]  Lorraine G. Olson,et al.  A SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD FOR THE LAPLACE EQUATION , 1996 .

[103]  Weiwei Sun Block iterative algorithms for solving Hermite bicubic collocation equations , 1996 .

[104]  A non-overlapping TH-domain decomposition , 1997 .

[105]  Bernard Bialecki,et al.  Multilevel additive and multiplicative methods for orthogonal spline collocation problems , 1997 .

[106]  A. P. Zieliński,et al.  Special Trefftz Elements and Improvement of Their Conditioning , 1997 .

[107]  Robert D. Russell,et al.  Spline Collocation Differentiation Matrices , 1997 .

[108]  V. Leitão Applications of multi-region Trefftz-collocation to fracture mechanics , 1998 .

[109]  Zi-Cai Li,et al.  Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities , 1998 .

[110]  P. Laubin,et al.  Spline Collocation for a Boundary Integral Equation on Polygons with Cuts , 1998 .

[111]  Bernard Bialecki Convergence Analysis of Orthogonal Spline Collocation for Elliptic Boundary Value Problems , 1998 .

[112]  B. Jiang On the least-squares method , 1998 .

[113]  Eisuke Kita,et al.  Application of a direct Trefftz method with domain decomposition to 2D potential problems , 1999 .

[114]  Bernard Bialecki,et al.  An Orthogonal Spline Collocation Alternating Direction Implicit Crank--Nicolson Method for Linear Parabolic Problems on Rectangles , 1999 .

[115]  Global superconvergence of simplified hybrid combinations for elliptic equations with singularities, I. Basic theorem , 1999 .

[116]  I. Herrera,et al.  Indirect methods of collocation: Trefftz‐Herrera collocation , 1999 .

[117]  A. Portela,et al.  Trefftz boundary element method applied to fracture mechanics , 1999 .

[118]  A. Charafi,et al.  Trefftz boundary elements—multi‐region formulations , 1999 .

[119]  Ismael Herrera,et al.  Trefftz Method: A General Theory , 2000 .

[120]  A boundary integral Trefftz formulation with symmetric collocation , 2000 .

[121]  Weiwei Sun,et al.  A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations , 2000, SIAM J. Numer. Anal..

[122]  Qing Hua Qin,et al.  The Trefftz Finite and Boundary Element Method , 2000 .

[123]  A. Drozdov Modelling structural recovery in amorphous polymers , 2000 .

[124]  T. Lu,et al.  Singularities and treatments of elliptic boundary value problems , 2000 .

[125]  Jinn-Liang Liu,et al.  Exact a posteriori error analysis of the least squares finite element method , 2000, Appl. Math. Comput..

[126]  Hermann Brunner,et al.  Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001, SIAM J. Numer. Anal..

[127]  Seymour V. Parter,et al.  Preconditioning Legendre Spectral Collocation Methods for Elliptic Problems I: Finite Difference Operators , 2001, SIAM J. Numer. Anal..

[128]  Yuesheng Xu,et al.  Fast Collocation Methods for Second Kind Integral Equations , 2002, SIAM J. Numer. Anal..

[129]  Graeme Fairweather,et al.  Discrete-Time Orthogonal Spline Collocation Methods for Vibration Problems , 2001, SIAM J. Numer. Anal..

[130]  Dan Givoli,et al.  Natural Boundary Integral Method and Its Applications , 2002 .

[131]  Zi-Cai Li,et al.  Global superconvergence of simplified hybrid combinations of the Ritz-Galerkin and FEMs for elliptic equations with singularities II: Lagrange elements and Adini's elements , 2002 .

[132]  S. Reutskiy A boundary method of Trefftz type with approximate trial functions , 2002 .

[133]  R. Van Keer,et al.  Global and local Trefftz boundary integral formulations for sound vibration , 2002 .

[134]  R. Yates,et al.  General theory of domain decomposition: Indirect methods , 2002 .

[135]  Moustafa S. Abou-Dina,et al.  Implementation of Trefftz method for the solution of some elliptic boundary value problems , 2002, Appl. Math. Comput..

[136]  Application of symmetric indirect Trefftz method to free vibration problems in 2D , 2003 .

[137]  H. Harbrecht,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Least Squares Methods for the Coupling of Fem and Bem Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .

[138]  Graeme Fairweather,et al.  Matrix Decomposition Algorithms for Modified Spline Collocation for Helmholtz Problems , 2002, SIAM J. Sci. Comput..

[139]  CARSTEN CARSTENSEN,et al.  A Posteriori Error Control in Adaptive Qualocation Boundary Element Analysis for a Logarithmic-Kernel Integral Equation of the First Kind , 2003, SIAM J. Sci. Comput..

[140]  Anita T. Layton A Semi-Lagrangian Collocation Method for the Shallow Water Equations on the Sphere , 2003, SIAM J. Sci. Comput..

[141]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[142]  Yuesheng Xu,et al.  A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels , 2003, SIAM J. Numer. Anal..

[143]  Indirect Trefftz method for boundary value problem of Poisson equation , 2003 .

[144]  Sang Dong Kim,et al.  Pseudospectral Least-Squares Method for the Second-Order Elliptic Boundary Value Problem , 2003, SIAM J. Numer. Anal..

[145]  JinHuang,et al.  THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .

[146]  Tzon-Tzer Lu,et al.  The collocation Trefftz method for biharmonic equations with crack singularities , 2004 .

[147]  Tzon-Tzer Lu,et al.  Highly accurate solutions of Motz's and the cracked beam problems , 2004 .

[148]  Anisotropic thin plate bending problems by Trefftz boundary collocation method , 2004 .

[149]  A. Cheng,et al.  Heritage and early history of the boundary element method , 2005 .

[150]  Tzon-Tzer Lu,et al.  Particular solutions of Laplace's equations on polygons and new models involving mild singularities , 2005 .

[151]  Zi-Cai Li,et al.  Interior boundary conditions in the Schwarz alternating method for the Trefftz method , 2005 .

[152]  A. Cheng,et al.  Radial basis collocation methods for elliptic boundary value problems , 2005 .

[153]  Z. C. Li,et al.  Special boundary approximation methods for laplace equation problems with boundary singularities - Applications to the motz problem , 2006, Comput. Math. Appl..

[154]  C.-S. Chien,et al.  Effective condition number for finite difference method , 2007 .

[155]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Fourier spectral methods , 2007 .

[156]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .