The gradient flow motion of boundary vortices

Abstract We consider the gradient flow of a family of energy functionals describing the formation of boundary vortices in thin magnetic films. We obtain motion laws for the singularities in all time scalings by using the method of Γ -convergence of gradient flows.

[1]  R. Moser Ginzburg-Landau vortices for thin ferromagnetic films , 2003 .

[2]  Robert V. Kohn,et al.  Effective dynamics for ferromagnetic thin films: a rigorous justification , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  L. Evans Measure theory and fine properties of functions , 1992 .

[4]  Giovanni Alberti,et al.  Variational convergence for functionals of Ginzburg-Landau type. , 2005 .

[5]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[6]  X. Cabré,et al.  Layer solutions in a half‐space for boundary reactions , 2005 .

[7]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[8]  F. Lin A remark on the previous paper “Some dynamical properties of Ginzburg-Landau vortices” , 1996 .

[9]  J. Toland,et al.  The Peierls–Nabarro and Benjamin–Ono Equations , 1997 .

[10]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[11]  Luís Almeida,et al.  Topological methods for the Ginzburg-Landau equations , 1998 .

[12]  A nonlocal singular perturbation problem with periodic well potential , 2006 .

[13]  Xavier Cabré Vilagut,et al.  Layer solutions in a half‐space for boundary reactions , 2005 .

[14]  Roger Moser,et al.  Boundary Vortices for Thin Ferromagnetic Films , 2004 .

[15]  G. Bouchitte,et al.  Un resultat de perturbations singulieres avec la norme H 1/2 , 1994 .

[16]  Roger Moser,et al.  Moving boundary vortices for a thin‐film limit in micromagnetics , 2005 .

[17]  Sylvia Serfaty,et al.  A product-estimate for Ginzburg–Landau and corollaries , 2004 .

[18]  G. Carbou THIN LAYERS IN MICROMAGNETISM , 2001 .

[19]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[20]  G. Bouchitté,et al.  Phase Transition with the Line‐Tension Effect , 1998 .

[21]  R. Kohn,et al.  Another Thin-Film Limit of Micromagnetics , 2005 .

[22]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[23]  正人 木村 Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .

[24]  Matthias Kurzke,et al.  Mathematik in den Naturwissenschaften Leipzig Boundary vortices in thin magnetic films by , 2004 .

[25]  Richard D. James,et al.  Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Sylvia Serfaty,et al.  LOCAL MINIMIZERS FOR THE GINZBURG–LANDAU ENERGY NEAR CRITICAL MAGNETIC FIELD: PART II , 1999 .

[27]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[28]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .