Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse

It has long been recognized that during solar eclipses, the ionosphere‐thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere‐ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high‐resolution, coupled ionosphere‐thermosphere‐electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere‐ionosphere coupling.

[1]  Libo Liu,et al.  A TIEGCM numerical study of the source and evolution of ionospheric F-region tongues of ionization: Universal time and interplanetary magnetic field dependence , 2017 .

[2]  R. Schunk,et al.  Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015 , 2016 .

[3]  Takuji Nakamura,et al.  Formation of polar ionospheric tongue of ionization during minor geomagnetic disturbed conditions , 2015 .

[4]  J. Lyon,et al.  Pathways of F region thermospheric mass density enhancement via soft electron precipitation , 2015 .

[5]  B. Lovell,et al.  Storm‐enhanced plasma density and polar tongue of ionization development during the 15 May 2005 superstorm , 2015 .

[6]  J. Lyon,et al.  Ionospheric control of magnetotail reconnection , 2014, Science.

[7]  S. Solomon,et al.  The NCAR TIE‐GCM , 2014 .

[8]  J. Lyon,et al.  Solar wind control of auroral Alfvénic power generated in the magnetotail , 2014 .

[9]  P. Blelly,et al.  High-latitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation , 2013 .

[10]  Qian Wu,et al.  Thermospheric winds around the cusp region , 2013 .

[11]  Stanley W. H. Cowley,et al.  Magnetosphere‐Ionosphere Interactions: A Tutorial Review , 2013 .

[12]  A. Coster,et al.  Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density , 2013 .

[13]  K. Shiokawa,et al.  Dynamic temporal evolution of polar cap tongue of ionization during magnetic storm , 2010 .

[14]  Min Wang,et al.  GPS TEC response to the 22 July 2009 total solar eclipse in East Asia , 2010 .

[15]  R. Lysak,et al.  Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities , 2008 .

[16]  H. Le,et al.  The midlatitude F2 layer during solar eclipses: Observations and modeling , 2008 .

[17]  R. Schunk,et al.  Duration of an ionospheric data assimilation initialization of a coupled thermosphere‐ionosphere model , 2007 .

[18]  B. Heilig,et al.  Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999 , 2006 .

[19]  W. Rideout,et al.  Multiradar observations of the polar tongue of ionization , 2005 .

[20]  S. E. Pryse,et al.  Evidence for the tongue of ionization under northward interplanetary magnetic field conditions , 2005 .

[21]  Timothy L Killeen,et al.  Initial results from the coupled magnetosphere–ionosphere–thermosphere model: thermosphere–ionosphere responses , 2004 .

[22]  A. Streltsov,et al.  Multiscale electrodynamics of the ionosphere‐magnetosphere system , 2004 .

[23]  M. Lockwood,et al.  Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945 , 2000 .

[24]  R. Lysak Propagation of Alfvén waves through the ionosphere: Dependence on ionospheric parameters , 1999 .

[25]  M. Lockwood,et al.  Effects of a mid‐latitude solar eclipse on the thermosphere and ionosphere ‐ A modelling study , 1998 .

[26]  Raymond G. Roble,et al.  A thermosphere/ionosphere general circulation model with coupled electrodynamics , 1992 .

[27]  Raymond G. Roble,et al.  A coupled thermosphere/ionosphere general circulation model , 1988 .

[28]  R. Roble,et al.  Observations of the May 30, 1984, annular solar eclipse at Millstone Hill , 1986 .

[29]  R. W. Spiro,et al.  A model of the high‐latitude ionospheric convection pattern , 1982 .

[30]  G. Atkinson,et al.  Effect of the day night ionospheric conductivity gradient on polar cap convective flow , 1978 .

[31]  R. Hunsucker,et al.  Incoherent scatter radar observations of the auroral zone ionosphere during the total solar eclipse of July 10, 1972 , 1973 .

[32]  M. Anastassiadis,et al.  ELECTRON CONTENT MEASUREMENTS BY BEACON S-66 SATELLITE DURING THE MAY 20, 1966, SOLAR ECLIPSE. , 1969 .

[33]  R. H. Smith Effects of Ionospheric Conductance on Magnetosphere-Ionosphere Coupling , 2012 .

[34]  I. Shagimuratov,et al.  The effect of total solar eclipse of October 3, 2005, on the total electron content over Europe , 2008 .

[35]  Tamas I. Gombosi,et al.  Ionospheric control of the magnetosphere: conductance , 2004 .