Second-order cone programming
暂无分享,去创建一个
[1] J. Davenport. Editor , 1960 .
[2] M. Powell,et al. On the Modification of LDL T Factorizations , 1974 .
[3] P. Gill,et al. Methods for computing and modifying the $LDV$ factors of a matrix , 1975 .
[4] D. Goldfarb. Factorized variable metric methods for unconstrained optimization , 1976 .
[5] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[6] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[7] M. Kojima,et al. A primal-dual interior point algorithm for linear programming , 1988 .
[8] R. C. Monteiro,et al. Interior path following primal-dual algorithms , 1988 .
[9] Renato D. C. Monteiro,et al. Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..
[10] Ina Ruck,et al. USA , 1969, The Lancet.
[11] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[12] Florian Jarre,et al. On the convergence of the method of analytic centers when applied to convex quadratic programs , 1991, Math. Program..
[13] Donald Goldfarb,et al. A Logarithmic Barrier Function Algorithm for Quadratically Constrained Convex Quadratic Programming , 1991, SIAM J. Optim..
[14] Sanjay Mehrotra,et al. A method of analytic centers for quadratically constrained convex quadratic programs , 1991 .
[15] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[16] Shinji Hara,et al. Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .
[17] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[18] Knud D. Andersen. A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996, TOMS.
[19] Hideki Hashimoto,et al. Dextrous hand grasping force optimization , 1996, IEEE Trans. Robotics Autom..
[20] Katya Scheinberg,et al. Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems , 1996, Math. Program..
[21] J. Huisman. The Netherlands , 1996, The Lancet.
[22] John B. Moore,et al. Recursive algorithms for real-time grasping force optimization , 1997, Proceedings of International Conference on Robotics and Automation.
[23] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[24] Michael J. Todd,et al. Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[25] L. Faybusovich. Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .
[26] F. Alizadeh,et al. Optimization with Semidefinite, Quadratic and Linear Constraints , 1997 .
[27] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[28] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[29] L. Faybusovich. Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .
[30] Yinyu Ye,et al. An Efficient Algorithm for Minimizing a Sum of Euclidean Norms with Applications , 1997, SIAM J. Optim..
[31] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[32] T. Tsuchiya. A Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming , 1997 .
[33] Laurent El Ghaoui,et al. Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..
[34] Stephen P. Boyd,et al. Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..
[35] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[36] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[37] Renato D. C. Monteiro,et al. Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..
[38] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[39] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[40] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[41] T. Tsuchiya. A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-ord , 1998 .
[42] F. Alizadeh,et al. Application of jordan algebras to the design and analysis of interior-point algorithms for linear, quadratically constrained quadratic, and semidefinite programming , 1999 .
[43] Arkadi Nemirovski,et al. Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..
[44] Stephen P. Boyd,et al. FIR Filter Design via Spectral Factorization and Convex Optimization , 1999 .
[45] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[46] Takashi Tsuchiya,et al. Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..
[47] Farid Alizadeh,et al. Symmetric Cones, Potential Reduction Methods and Word-by-Word Extensions , 2000 .
[48] J. Sturm. Similarity and other spectral relations for symmetric cones , 2000 .
[49] Farid Alizadeh,et al. Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..
[50] Mehmet Tolga Çezik,et al. Cut Generation for Mixed 0-1 Quadratically Constrained Programs , 2001 .
[51] Arkadi Nemirovski,et al. On Polyhedral Approximations of the Second-Order Cone , 2001, Math. Oper. Res..
[52] M. Kojima,et al. Second order cone programming relaxation of nonconvex quadratic optimization problems , 2001 .
[53] L. Faybusovich. A Jordan-algebraic approach to potential-reduction algorithms , 2002 .
[54] Katya Scheinberg,et al. A product-form Cholesky factorization method for handling dense columns in interior point methods for linear programming , 2004, Math. Program..
[55] G. Pataki. Cone-LP ' s and Semidefinite Programs : Geometry and a Simplex-Type Method , 2022 .