Optimal Motion and Structure Estimation

The causes of existing linear algorithms exhibiting various high sensitivities to noise are analyzed. It is shown that even a small pixel-level perturbation may override the epipolar information that is essential for the linear algorithms to distinguish different motions. This analysis indicates the need for optimal estimation in the presence of noise. Methods are introduced for optimal motion and structure estimation under two situations of noise distribution: known and unknown. Computationally, the optimal estimation amounts to minimizing a nonlinear function. For the correct convergence of this nonlinear minimization, a two-step approach is used. The first step is using a linear algorithm to give a preliminary estimate for the parameters. The second step is minimizing the optimal objective function starting from that preliminary estimate as an initial guess. A remarkable accuracy improvement has been achieved by this two-step approach over using the linear algorithm alone. >

[1]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[2]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Aloimonos,et al.  Optimal motion estimation , 1989, [1989] Proceedings. Workshop on Visual Motion.

[6]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[7]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[8]  J. Dennis,et al.  Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation , 1971 .

[9]  Narendra Ahuja,et al.  ERROR ANALYSIS OF MOTION PARAMETER ESTIMATION FROM IMAGE SEQUENCES. , 1987 .

[10]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[11]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jake K. Aggarwal,et al.  A computational analysis of time-varying images. , 1986 .

[13]  Narendra Ahuja,et al.  Two-view Matching , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[14]  Paul R. Cohen,et al.  Extended structure and motion analysis from monocular image sequences , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[15]  Xinhua Zhuang,et al.  A simplified linear optic flow-motion algorithm , 1988, Comput. Vis. Graph. Image Process..

[16]  Frank M. Hsu,et al.  Least Square Estimation with Applications to Digital Signal Processing , 1985 .

[17]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Thomas S. Huang,et al.  Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  R. Woodham,et al.  Determining the movement of objects from a sequence of images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[21]  William E. Collins,et al.  IEEE ACOUSTICS, SPEECH, AND SIGNAL PROCESSING SOCIETY , 1979 .

[22]  J. Weng,et al.  Motion from images: image matching, parameter estimation and intrinsic stability , 1989, [1989] Proceedings. Workshop on Visual Motion.

[23]  Janet Aisbett,et al.  An Iterated Estimation of the Motion Parameters of a Rigid Body from Noisy Displacement Vectors , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[25]  T S Huang,et al.  Two-view motion analysis: a unified algorithm. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[26]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[27]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[29]  Narendra Ahuja,et al.  3-D Motion Estimation, Understanding, and Prediction from Noisy Image Sequences , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Patrick Rives,et al.  Recursive Estimation of 3D Features Using Optical Flow and Camera Motion , 1986, Annual Meeting of the IEEE Industry Applications Society.

[31]  Berthold K. P. Horn,et al.  Passive navigation , 1982, Computer Vision Graphics and Image Processing.

[32]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[33]  Narendra Ahuja,et al.  TWO-STEP APPROACH TO OPTIMAL MOTION AND STRUCTURE ESTIMATION. , 1987 .

[34]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[35]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[39]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[40]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[41]  G. Saridis Parameter estimation: Principles and problems , 1983, Proceedings of the IEEE.

[42]  Narendra Ahuja,et al.  Matching Two Perspective Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[44]  F. N. David,et al.  LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .

[45]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[46]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[47]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Olivier Faugeras,et al.  Structure from motion using the reconstruction and reprojection technique on noisy and incorrect point matches , 1987 .

[49]  Thomas S. Huang,et al.  Determining 3-D motion and structure of a rigid body using the spherical projection , 1982, Comput. Graph. Image Process..

[50]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[51]  Narendra Ahuja,et al.  Closed-form solution+maximum likelihood: a robust approach to motion and structure estimation , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.