Isolated Hypersurface Singularities as Noncommutative Spaces Acknowledgments
暂无分享,去创建一个
[1] Vladimir I. Arnold,et al. Singularities of Differentiable Maps, Volume 2 , 2012 .
[2] M. Bergh,et al. On two examples by Iyama and Yoshino , 2008, Compositio Mathematica.
[3] Daniel Murfet,et al. The Kapustin-Li formula revisited , 2010, 1004.0687.
[4] L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence , 2009, 0905.2621.
[5] Ed Segal. The closed state space of affine Landau-Ginzburg B-models , 2009, 0904.1339.
[6] D. Orlov,et al. Formal completions and idempotent completions of triangulated categories of singularities , 2009, 0901.1859.
[7] P. Seidel. Homological mirror symmetry for the genus two curve , 2008, 0812.1171.
[8] M. Kontsevich,et al. Hodge theoretic aspects of mirror symmetry , 2008 .
[9] M. Khovanov,et al. Matrix factorizations and link homology , 2004, math/0401268.
[10] M. Kontsevich,et al. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I , 2006, math/0606241.
[11] Dmitri Orlov,et al. Triangulated categories of singularities and equivalences between Landau-Ginzburg models , 2005, math/0503630.
[12] I. Brunner,et al. Matrix factorizations and mirror symmetry: the cubic curve , 2004, hep-th/0408243.
[13] D. Orlov,et al. Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities , 2005, math/0503632.
[14] B. Toën. The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.
[15] Goncalo Tabuada. Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.
[16] A. Kapustin,et al. On the Relation Between Open and Closed Topological Strings , 2004, hep-th/0405232.
[17] A. Kapustin,et al. D-branes in topological minimal models: the Landau-Ginzburg approach , 2003, hep-th/0306001.
[18] Kenji Lefevre-Hasegawa. Sur les A [infini]-catégories , 2003, math/0310337.
[19] D. Orlov,et al. Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003, math/0302304.
[20] H. Schoutens. Projective Dimension and the Singular Locus , 2003 .
[21] B. Shipley,et al. Stable model categories are categories of modules , 2003 .
[22] M. Kontsevich,et al. Homological mirror symmetry and torus fibrations , 2000, math/0011041.
[23] Bernhard Keller,et al. Introduction to $A$-infinity algebras and modules , 1999, math/9910179.
[24] S. Merkulov. Strong homotopy algebras of a Kähler manifold , 1998 .
[25] David Eisenbud,et al. Roots of Commutative Algebra , 1995 .
[26] Bernhard Keller,et al. Deriving DG categories , 1994 .
[27] A. Neeman,et al. Homotopy limits in triangulated categories , 1993 .
[28] A. Duncan. COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .
[29] B. Keller. Chain complexes and stable categories , 1990 .
[30] D. Eisenbud,et al. Cohen-Macaulay modules on quadrics , 1987 .
[31] Ragnar-Olaf Buchweitz,et al. Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings , 1986 .
[32] C. U. Jensen,et al. Dimensions cohomologiques relieés aux foncteurs , 1981 .
[33] David Eisenbud,et al. Homological algebra on a complete intersection, with an application to group representations , 1980 .
[34] Kuo-Tsai Chen,et al. Iterated path integrals , 1977 .
[35] Jim Stasheff,et al. H-Spaces from a Homotopy Point of View , 1970 .
[36] R. G. Swan. Induced Representations and Projective Modules , 1960 .