Coverage with k-transmitters in the presence of obstacles
暂无分享,去创建一个
Prosenjit Bose | Pat Morin | Erik D. Demaine | Ryuhei Uehara | John Iacono | Vida Dujmovic | Ferran Hurtado | Diane L. Souvaine | Anna Lubiw | Vera Sacristán Adinolfi | Brad Ballinger | Nadia Benbernou | Mirela Damian | Robin Y. Flatland | E. Demaine | D. Souvaine | A. Lubiw | V. Dujmovic | J. Iacono | Brad Ballinger | Nadia M. Benbernou | Mirela Damian | Prosenjit Bose | Ferran Hurtado | Pat Morin | Ryuhei Uehara
[1] David Eppstein,et al. Guard placement for efficient point-in-polygon proofs , 2007, SCG '07.
[2] János Pach,et al. Intersecting convex sets by rays , 2008, SCG '08.
[3] Jorge Urrutia,et al. Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.
[4] Michael Hoffmann,et al. Improved Bounds for Wireless Localization , 2008, Algorithmica.
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[7] Stephen G. Hartke,et al. Further Results on Bar k-Visibility Graphs , 2007, SIAM J. Discret. Math..
[8] Jorge Urrutia,et al. On Modem Illumination Problems , 2014 .
[9] Joseph O'Rourke,et al. A New Lower Bound on Guard Placement for Wireless Localization , 2007, ArXiv.
[10] Oleg V. Borodin. A new proof of the 6 color theorem , 1995, J. Graph Theory.
[11] Yue Zhao,et al. A New Bound on the Cyclic Chromatic Number , 2001, J. Comb. Theory, Ser. B.
[12] D. T. Lee,et al. Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.
[13] Joachim Gudmundsson. Proceedings of the 11th Scandinavian workshop on Algorithm Theory , 2008 .
[14] Jorge Urrutia,et al. Guarding rectangular art galleries , 1994, Discret. Appl. Math..
[15] Stefan Felsner,et al. Parameters of Bar k-Visibility Graphs , 2008, J. Graph Algorithms Appl..
[16] Yue Zhao,et al. On cyclic colorings and their generalizations , 1999, Discret. Math..
[17] V. Chvátal. A combinatorial theorem in plane geometry , 1975 .
[18] Ellen Gethner,et al. Bar k-Visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness , 2005, GD.
[19] Franz Aurenhammer,et al. On k-convex polygons , 2010, Comput. Geom..
[20] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[21] Franz Aurenhammer,et al. Two-convex polygons , 2009 .