Inductively guided circuits for ultracold dressed atoms

Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control.

[1]  K. Brown,et al.  Techniques for Microwave Near-Field Quantum Control of Trapped Ions , 2012, 1211.6554.

[2]  Astronomy,et al.  Accurate microwave control and real-time diagnostics of neutral-atom qubits , 2008, 0811.3634.

[3]  O. Zobay,et al.  Two-dimensional atom trapping in field-induced adiabatic potentials. , 2001, Physical review letters.

[4]  E. Riis,et al.  Smooth inductively coupled ring trap for atoms , 2008 .

[5]  C. J. Foot,et al.  Trapping ultracold atoms in time-averaged adiabatic potentials , 2009, 0912.3393.

[6]  Ernst Helmut Brandt,et al.  Superconducting Thin Rings with Finite Penetration Depth , 2003, cond-mat/0312497.

[7]  Tommaso Calarco,et al.  Microwave potentials and optimal control for robust quantum gates on an atom chip , 2006 .

[8]  C. Ryu,et al.  Experimental realization of Josephson junctions for an atom SQUID. , 2013, Physical review letters.

[9]  E. Riis,et al.  Large magnetic storage ring for Bose-Einstein condensates , 2005, cond-mat/0506142.

[10]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[11]  Verhaar,et al.  Trapping of neutral atoms with resonant microwave radiation. , 1989, Physical review letters.

[12]  M D Barrett,et al.  Storage ring for neutral atoms. , 2001, Physical review letters.

[13]  Realization of a superconducting atom chip. , 2006, Physical review letters.

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  C Zimmermann,et al.  Meissner effect in superconducting microtraps. , 2008, Physical review letters.

[16]  Mark Bashkansky,et al.  Cold-atom confinement in an all-optical dark ring trap , 2007, 0802.1213.

[17]  I. Hughes,et al.  Piezoelectrically actuated time-averaged atomic microtraps , 2012, 1205.0194.

[18]  C. cohen-tannoudji,et al.  Dressed-atom approach to atomic motion in laser light: the dipole force revisited , 1985 .

[19]  Jakob Reichel,et al.  Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip , 2009, 0904.4837.

[20]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[21]  József Fortágh,et al.  Magnetic microtraps for ultracold atoms , 2007 .

[22]  Phillips,et al.  Demonstration of neutral atom trapping with microwaves. , 1994, Physical review letters.

[23]  C. MacCormick,et al.  Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates , 2009, 0902.2171.

[24]  T. Fernholz,et al.  Dynamically Controlled Toroidal and Ring-Shaped Magnetic Traps , 2007 .

[25]  C. Search,et al.  Atom gyroscope with disordered arrays of quantum rings , 2010 .

[26]  D. Meeker,et al.  Finite Element Method Magnetics , 2002 .

[27]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[28]  S Gupta,et al.  Bose-Einstein condensation in a circular waveguide. , 2005, Physical review letters.

[29]  Philipp Treutlein,et al.  Imaging of microwave fields using ultracold atoms , 2010, 1009.4651.

[30]  R. Fletcher,et al.  Persistent currents in spinor condensates. , 2012, Physical review letters.

[31]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[32]  J. Pritchard,et al.  Demonstration of an inductively coupled ring trap for cold atoms , 2012, 1207.4225.

[33]  B. Garraway,et al.  Inductive dressed ring traps for ultracold atoms , 2013, 1310.2070.

[34]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[35]  W. Buchwald,et al.  Adjustable Microchip Ring Trap for Cold Atoms and Molecules , 2009, 0910.0564.

[36]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[37]  W. Phillips,et al.  Driving phase slips in a superfluid atom circuit with a rotating weak link. , 2012, Physical review letters.

[38]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[39]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.