Mechanical Properties and Durability of CNT Cement Composites

In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

[1]  Pedro Garcés,et al.  Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars , 2005 .

[2]  Rashid K. Abu Al-Rub,et al.  Distribution of Carbon Nanofibers and Nanotubes in Cementitious Composites , 2010 .

[3]  I. De la Varga,et al.  Corrosion of steel reinforcement in structural concrete with carbon material addition , 2007 .

[4]  Francisca Puertas,et al.  Comportamiento de morteros de escoria activada alcalinamente con adición de fibras de carbón , 2007 .

[5]  J. S. Alcaide,et al.  Caracterización mecánica de morteros de cemento Portland con breas de petróleo y de alquitrán de carbón , 2007 .

[6]  M. Climent,et al.  Viabilidad de utilización de una pasta de cemento con nanofibras de carbono como ánodo en la extracción electroquímica de cloruros en hormigón , 2013 .

[7]  C. Andrade,et al.  Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements , 1978 .

[8]  M. C. Alonso,et al.  Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period , 2005 .

[9]  Oscar Galao,et al.  Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers , 2013, Materials.

[10]  D. Chung Cement-matrix composites for thermal engineering , 2001 .

[11]  Jiango Li,et al.  Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs) , 2005 .

[12]  F. J. Baeza,et al.  Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes , 2012 .

[13]  Florence Sanchez,et al.  Performance of Carbon Nanofiber–Cement Composites with a High-Range Water Reducer , 2010 .

[14]  D.D.L. Chung,et al.  Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement–matrix graphite network composite , 2010 .

[15]  Florence Sanchez,et al.  Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites , 2009 .

[16]  V. Shanov,et al.  Introduction to carbon nanotube and nanofiber smart materials , 2006 .

[17]  E. G. Alcocel,et al.  Efecto de la adición de ceniza de lodo de depuradora (CLD) en las propiedades mecánicas y niveles de corrosión de las armaduras embebidas en morteros de cemento Portland , 2006 .

[18]  Oscar Galao,et al.  Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements , 2013, Materials.

[19]  O. Galao,et al.  Mechanical properties and corrosion of CAC mortars with carbon fibers , 2012 .

[20]  Raúl Fangueiro,et al.  A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites , 2013 .

[21]  D. Ph.,et al.  Multi-scale Performance and Durability of Carbon Nanofiber/Cement Composites , 2009 .

[22]  F. Baeza,et al.  Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites , 2013 .

[23]  J. Payá,et al.  Carbonation rate and reinforcing steel corrosion rate of OPC/FC3R/FA mortars under accelerated conditions , 2009 .

[24]  P. Garcés,et al.  Función de apantallamiento de interferencia electromagnética de pastas de cemento con materiales carbonosos y cenizas volantes procesadas , 2010 .

[25]  D.D.L. Chung,et al.  Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites , 2007 .

[26]  Maria S. Konsta-Gdoutos,et al.  Carbon Nanofiber–Reinforced Cement-Based Materials , 2010 .

[27]  D. Chung Cement reinforced with short carbon fibers: a multifunctional material , 2000 .

[28]  M. Climent,et al.  Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst , 2009 .

[29]  I. Martín-Gullón,et al.  Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system , 2011 .

[30]  D. Chung Functional properties of cement-matrix composites , 2001 .

[31]  Giuseppe Andrea Ferro,et al.  Influence of carbon nanotubes structure on the mechanical behavior of cement composites , 2009 .

[32]  D. Chung,et al.  Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection , 1993 .

[33]  Vesa Penttala,et al.  Direct Synthesis of Carbon Nanofibers on Cement Particles , 2010 .

[34]  J. Payá,et al.  Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst , 2008 .

[35]  J. Payá,et al.  Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R) cement mortars , 2008 .