Third-order optical nonlinearities of chiral graphene tubules

Abstract The third-order optical nonlinearities, characterized by the second-order hyperpolarizabilities γ , of chiral graphene tubules are studied. The average contribution η of one carbon atom to the third-order optical nonlinearity of each chiral graphene tubule is calculated and compared with that of a well characterized polyenic polymer. It is found that the smaller the diameter of a chiral graphene tubule, the larger the average contribution η ; the metallic chiral graphene tubule favors larger γ values; chiral graphene tubules can compete with the conducting polymer achieving a large γ value which is needed for photonic applications.

[1]  Jie Jiang,et al.  LARGE THIRD-ORDER OPTICAL NONLINEARITIES OF C60-DERIVED NANOTUBES IN INFRARED , 1997 .

[2]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[3]  Doping effect on the third-order optical nonlinearities of C70 , 1999 .

[4]  Ulrike Woggon,et al.  Optical Properties of Semiconductor Quantum Dots , 1996 .

[5]  M. Dresselhaus Carbon nanotubes , 1995 .

[6]  J. Sakai,et al.  Phase conjugate optics , 1992 .

[7]  K. Harigaya Inter-impurity interaction and structure of a trapped bipolaron in doped conjugated polymers , 1991 .

[8]  Yi Luo,et al.  Ab initio calculations of the polarizability and the hyperpolarizability of C60 , 1997 .

[9]  Dresselhaus,et al.  Symmetry properties of chiral carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[10]  Joseph Zyss,et al.  Molecular nonlinear optics , 1993 .

[11]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[12]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[13]  B. Cardelino,et al.  Static Third-Order Polarizability Calculations for C60, C70, and C84 , 1996 .

[14]  Fujita,et al.  Dimerization structures of metallic and semiconducting fullerene tubules. , 1993, Physical review. B, Condensed matter.

[15]  Youwei Du,et al.  Nonlinear optical response of the higher fullerene C90- a comparison with C60 , 1997 .

[16]  Paras N. Prasad,et al.  Organic molecules for nonlinear optics and photonics , 1991 .

[17]  Jie Jiang,et al.  Nonlinear optical properties of armchair nanotube , 1997 .

[18]  Hong Yang,et al.  Measurement on the third-order optical nonlinearity of C70 and its poly-aminonitrile derivative by using the femtosecond optical Kerr effect , 1999 .

[19]  J. Ketterson,et al.  Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation , 1993, Science.

[20]  Francesco Zerbetto,et al.  Frequency-Dependent Second-Order Hyperpolarizability of Carbon Clusters: A Semiempirical Investigation , 1995 .

[21]  Harold H. Fox,et al.  Saturation of Cubic Optical Nonlinearity in Long-Chain Polyene Oligomers , 1994, Science.

[22]  Abe,et al.  Optical-absorption spectra in fullerenes C60 and C70: Effects of Coulomb interactions, lattice fluctuations, and anisotropy. , 1994, Physical review. B, Condensed matter.

[23]  R. Xie Large third-order optical non-linearities in boron- or nitrogen-doped zigzag nanotube , 1999 .

[24]  P. Fowler,et al.  Ab initio scaling of the second hyperpolarizabilities of carbon cages , 1997 .

[25]  R. Xie,et al.  A scaling law of the second-order hyperpolarizability in armchair nanotube , 1998 .

[26]  R. Xie Empirical exponent law of the second-order hyperpolarizability in small armchair and zig–zag nanotubes , 1998 .

[27]  Youwei Du,et al.  Third-Order Nonlinear Optical Response of Fullerenes as a Function of the Carbon Cage Size (C60 to C96) at 0.532 μm , 1998 .

[28]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[29]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[30]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[31]  Yu,et al.  Nonlinear optical properties of the substituted fullerenes C59X (X=B,N). , 1995, Physical review. B, Condensed matter.