Status and future developments of the Linear IFMIF Prototype Accelerator (LIPAc)

[1]  A. Kasugai,et al.  Preparation of the Cryomodule Assembly for the Linear IFMIF Prototype Accelerator (LIPAc) in Rokkasho , 2020 .

[2]  H. Dzitko,et al.  Commissioning of high current H+/D+ ion beams for the prototype accelerator of the International Fusion Materials Irradiation Facility. , 2020, The Review of scientific instruments.

[3]  R. Heidinger,et al.  Deuteron beam commissioning of the linear IFMIF prototype accelerator ion source and low energy beam transport , 2019, Nuclear Fusion.

[4]  R. Heidinger,et al.  The European approach to the fusion-like neutron source: the IFMIF-DONES project , 2019, Nuclear Fusion.

[5]  R. Heidinger,et al.  Beam diagnostics of an ECR ion source on LIPAc injector for prototype IFMIF beam accelerator , 2018, Fusion Engineering and Design.

[6]  F. S. Nitti,et al.  Erosion-corrosion resistance of Reduced Activation Ferritic-Martensitic steels exposed to flowing liquid Lithium , 2018, Fusion Engineering and Design.

[7]  Ivan Podadera,et al.  Linear IFMIF Prototype Accelerator (LIPAc): Installation activities for Phase-B beam commissioning in Rokkasho , 2018 .

[8]  D. Iglesias,et al.  The LIPAc beam dump , 2018 .

[9]  Eiichi Wakai,et al.  Overview of the IFMIF/EVEDA project , 2017 .

[10]  R. Rolli,et al.  Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase , 2016 .

[11]  Eiichi Wakai,et al.  IFMIF, the European-Japanese efforts under the Broader Approach Agreement towards a Li(d,xn) neutron source:current status and future options , 2016 .

[12]  E. Wakai,et al.  Demonstration of Li target facility in IFMIF/EVEDA project: Li target stability in continuous operation of entire system , 2016 .

[13]  R. Heidinger,et al.  Intermediate Commissioning Results of the Required 140 mA/100 keV CW D⁺ ECR Injector of LIPAc, IFMIF's Prototype , 2016 .

[14]  A. Suzuki,et al.  Round Robin test for the determination of nitrogen concentration in solid Lithium , 2016 .

[15]  S. Chel,et al.  Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site. , 2016, The Review of scientific instruments.

[16]  R. Heidinger,et al.  Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector. , 2016, The Review of scientific instruments.

[17]  D. Regidor,et al.  Technical and Logistical Challenges for IFMIF-LIPAC Cryomodule Construction , 2015 .

[18]  Eiichi Wakai,et al.  Validation of IFMIF liquid Li target for IFMIF/EVEDA project , 2015 .

[19]  Enric Bargalló,et al.  The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source , 2015, 2112.14211.

[20]  R. Duperrier,et al.  Dynamics of the IFMIF very high-intensity beam , 2014 .

[21]  M. Muzzarelli,et al.  Lifus (lithium for fusion) 6 loop design and construction , 2013 .

[22]  Frederik Arbeiter,et al.  Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules , 2012 .

[23]  Masayoshi Sugimoto,et al.  Main baseline of IFMIF/EVEDA project , 2009 .

[24]  G. R. Odette,et al.  Modeling of microstructural evolution under irradiation , 1979 .

[25]  J. P. Blewett,et al.  An Intense Li( d,n ) Neutron Radiation Test Facility for Controlled Thermonuclear Reactor Materials Testing , 1976 .

[26]  H. Dzitko,et al.  PROGRESS OF IFMIF/EVEDA PROJECT AND PROSPECTS FOR A-FNS , 2019 .

[27]  R. Heidinger,et al.  IFMIF/EVEDA RFQ Preliminary Beam Characterization , 2019 .

[28]  F. Toral,et al.  STATUS OF THE IFMIF/EVEDA SUPERCONDUCTING LINAC , 2019 .

[29]  R. Ichimiya,et al.  OVERVIEW OF THE VALIDATION ACTIVITIES OF IFMIF / EVEDA : LIPAC , THE LINEAR IFMIF PROTOTYPE ACCELERATOR AND LIFUS 6 , THE LITHIUM CORROSIO INDUCED FACILITY , 2018 .

[30]  T. Nozawa,et al.  DESIGN PROGRESS OF ADVANCED FUSION NEUTRON SOURCE FOR JA / DEMO FUSION REACTOR , 2018 .