Exploring Energy Transfer in a Metal/Perovskite Nanocrystal Antenna to Drive Photocatalysis.

The use of all-inorganic perovskite nanocrystals (PeNCs) in photocatalytic systems has been limited due to their instability in polar solvents. Encapsulation of PeNCs in inorganic and polymeric matrices has been shown to be effective in overcoming such instability issues, yet studies on charge/energy extraction from these composite systems are still rare. Herein, we explore the capacity of CsPbBr3 PeNC/AlOx composite films to drive chemical reactions by coupling them to plasmonic AgNCs. AlOx is used both as a stabilizing layer and as a spacer to study distance-dependent excitation energy transfer, which reveal a unidirectional migration of energy from the PeNCs towards the AgNCs. We then utilize this pooled energy for a plasmon-mediated methylene blue desorption where we demonstrate enhancement effects of spectral and spatial absorption on the reaction outcome due to the coupling to PeNCs.

[1]  Zhenda Lu,et al.  Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals , 2019, Nature Communications.

[2]  L. Amirav,et al.  Selective Growth of Ni Tips on Nanorod Photocatalysts , 2016 .

[3]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[4]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[5]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[6]  X. W. Sun,et al.  Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations , 2016 .

[7]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[8]  Jacek K. Stolarczyk,et al.  Electron Transfer Rate vs Recombination Losses in Photocatalytic H2 Generation on Pt-Decorated CdS Nanorods , 2016 .

[9]  S. Linic,et al.  Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis , 2016, Nature Communications.

[10]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[11]  Jan Vogelsang,et al.  Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. , 2018, The journal of physical chemistry letters.

[12]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[13]  G. Schatz,et al.  Distance-Dependence of Interparticle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots. , 2017, ACS nano.

[14]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[15]  P. Guyot-Sionnest,et al.  Atomic Layer Deposition of ZnO in Quantum Dot Thin Films , 2009 .

[16]  T. Klar,et al.  Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers , 2004 .

[17]  Xuhui Xu,et al.  In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. , 2018, ACS applied materials & interfaces.

[18]  M. Law,et al.  Robust, functional nanocrystal solids by infilling with atomic layer deposition. , 2011, Nano letters.

[19]  Thomas Geiger,et al.  Built-in quantum dot antennas in dye-sensitized solar cells. , 2010, ACS nano.

[20]  D. Oron,et al.  Quantum Dot Antennas for Photoelectrochemical Solar Cells , 2011 .

[21]  J. Rubim,et al.  Surface-Enhanced Resonance Raman (SERR) Spectra of Methylene Blue Adsorbed on a Silver Electrode , 2003 .

[22]  M. Law,et al.  PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V(-1) s(-1). , 2013, Nano letters.

[23]  Yang-Fan Xu,et al.  Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction , 2018, ACS Energy Letters.

[24]  Jiangtian Li,et al.  Plasmon-induced resonance energy transfer for solar energy conversion , 2015, Nature Photonics.

[25]  A. Urban,et al.  Dephasing and Quantum Beating of Excitons in Methylammonium Lead Iodide Perovskite Nanoplatelets , 2017 .

[26]  J. R. Ommen,et al.  Deposition Mechanism of Aluminum Oxide on Quantum Dot Films at Atmospheric Pressure and Room Temperature , 2016 .

[27]  Francesco Scotognella,et al.  Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods , 2016, Nature Communications.

[28]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[29]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[30]  P. Nordlander,et al.  Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. , 2014, Journal of the American Chemical Society.

[31]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[32]  Tom Gregorkiewicz,et al.  Energy Transfer between Inorganic Perovskite Nanocrystals , 2016 .

[33]  E. Sargent,et al.  Photovoltaic concepts inspired by coherence effects in photosynthetic systems. , 2016, Nature materials.

[34]  T. Klar,et al.  Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. , 2005, Nano letters.

[35]  Thomas A. Klar,et al.  Exciton Recycling in Graded Gap Nanocrystal Structures , 2004 .

[36]  S. Linic,et al.  Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. , 2016, ACS nano.

[37]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[38]  S. Linic,et al.  Chemical Requirement for Extracting Energetic Charge Carriers from Plasmonic Metal Nanoparticles to Perform Electron-Transfer Reactions. , 2018, Journal of the American Chemical Society.

[39]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[40]  Moritz F. Kuehnel,et al.  ZnSe Nanorods as Visible‐Light Absorbers for Photocatalytic and Photoelectrochemical H2 Evolution in Water , 2019, Angewandte Chemie.

[41]  E. Reisner,et al.  Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. , 2015, Journal of the American Chemical Society.

[42]  A. L. Bradley,et al.  Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. , 2012, ACS nano.

[43]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[44]  E. Weiss,et al.  Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO2 to CO in Water. , 2018, ACS nano.

[45]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[46]  Victor I. Klimov,et al.  Picosecond Energy Transfer in Quantum Dot Langmuir - Blodgett Nanoassemblies , 2003 .

[47]  U. Banin,et al.  PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET. , 2015, ACS applied materials & interfaces.

[48]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[49]  G. Rainò,et al.  Superfluorescence from lead halide perovskite quantum dot superlattices , 2018, Nature.

[50]  G. Schatz,et al.  Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting–catalyst assemblies , 2018, Proceedings of the National Academy of Sciences.

[51]  Liwei Lin,et al.  Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. , 2016, ACS applied materials & interfaces.

[52]  Emad Oveisi,et al.  CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. , 2017, Angewandte Chemie.

[53]  E. Rabani,et al.  Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer. , 2018, Nano letters (Print).

[54]  D. Radu,et al.  Absorption and scattering cross-section extinction values of silver nanoparticles , 2016 .

[55]  William W. Yu,et al.  Spontaneous Silver Doping and Surface Passivation of CsPbI3 Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2. , 2018, ACS energy letters.

[56]  E. Weiss,et al.  Accelerating FRET between Near-Infrared Emitting Quantum Dots Using a Molecular J-Aggregate as an Exciton Bridge. , 2017, Nano letters.

[57]  Ru‐Shi Liu,et al.  Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. , 2016, Angewandte Chemie.

[58]  Oleksandr Isaienko,et al.  Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. , 2016, Nano letters.

[59]  David Volbers,et al.  Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. , 2014, Nature materials.

[60]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[61]  Christos Argyropoulos,et al.  Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas , 2016 .

[62]  Jaeyoung Heo,et al.  Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. , 2018, Nano letters.

[63]  Nan Zhu,et al.  Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation. , 2014, Journal of the American Chemical Society.

[64]  L. Amirav,et al.  Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. , 2018, Nano letters.

[65]  Jacek K. Stolarczyk,et al.  Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures , 2018 .

[66]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[67]  R. Buonsanti,et al.  Universal Oxide Shell Growth Enables in Situ Structural Studies of Perovskite Nanocrystals during the Anion Exchange Reaction. , 2019, Journal of the American Chemical Society.

[68]  A. L. Bradley,et al.  Förster resonant energy transfer in quantum dot layers , 2010 .