Tangential interpolatory projection for model reduction of completely passive linear quantum stochastic systems

This paper presents a tangential interpolatory projection model reduction method for the class of completely passive linear quantum stochastic systems, often encountered in quantum optics and related fields. We show that the important physical realizability property of the full-order system is preserved through the interpolatory projection approximation. Sufficient conditions that guarantee asymptotic stability and minimality of the reduced-order approximation are established. We also present an optimization based routine for selection of interpolation points and propose a heuristic approach to select tangent directions, the key elements of the interpolatory projection method for multiple-input multiple-output systems. An example is presented to illustrate the utility of our proposed approach.

[1]  Ian R. Petersen,et al.  Singular Perturbation Approximations for a Class of Linear Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[2]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[3]  Hendra Ishwara Nurdin,et al.  Structures and Transformations for Model Reduction of Linear Quantum Stochastic Systems , 2013, IEEE Transactions on Automatic Control.

[4]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[5]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[6]  Javad Mohammadpour,et al.  Efficient modeling and control of large-scale systems , 2010 .

[7]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[8]  Hendra I. Nurdin,et al.  Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks , 2010, 1011.2027.

[9]  Ramon van Handel,et al.  Approximation and limit theorems for quantum stochastic models with unbounded coefficients , 2007, 0712.2276.

[10]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  Paul Van Dooren,et al.  Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..

[13]  Guofeng Zhang,et al.  On realization theory of quantum linear systems , 2013, Autom..

[14]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[15]  Ian R Petersen,et al.  Coherent $H^{\infty }$ Control for a Class of Annihilation Operator Linear Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[16]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[17]  Viacheslav P. Belavkin,et al.  Quantum Filtering and Optimal Control , 2008 .

[18]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[19]  Ian R. Petersen,et al.  Low frequency approximation for a class of linear quantum systems using cascade cavity realization , 2011, Syst. Control. Lett..